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ABSTRACT. We develop approximate estimation methods for exponential random graph models

(ERGMs), whose likelihood is proportional to an intractable normalizing constant. The usual ap-

proach approximates this constant with Monte Carlo simulations, however convergence may be

exponentially slow. We propose a deterministic method, based on a variational mean-field approxi-

mation of the ERGM’s normalizing constant. We compute lower and upper bounds for the approx-

imation error for any network size, adapting nonlinear large deviations results. This translates into

bounds on the distance between true likelihood and mean-field likelihood. Monte Carlo simulations

suggest that in practice our deterministic method performs better than our conservative theoretical

approximation bounds imply, for a large class of models.

Keywords: Networks, Microeconometrics, Large Networks, Variational Inference, Large devia-

tions, Mean-Field Approximations

1. INTRODUCTION

This paper studies variational mean-field methods to approximate the likelihood of exponential

random graph models (ERGMs), a class of statistical network formation models that has become

popular in sociology, machine learning, statistics and more recently economics. While a large

part of the statistical network literature is devoted to models with unconditionally or conditionally

independent links (Graham, 2017; Airoldi et al., 2008; Bickel et al., 2013), ERGMs allow for

conditional and unconditional dependence among links (Snijders, 2002; Wasserman and Pattison,

1996). These models have recently gained attention in economics, because several works have

shown that ERGMs have a microeconomic foundation. In fact, the ERGM likelihood naturally
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emerges as the stationary equilibrium of a potential game, where players engage in a myopic best-

response dynamics of link formation (Blume, 1993; Mele, 2017; Badev, 2013; Chandrasekhar,

2016; Chandrasekhar and Jackson, 2014; Boucher and Mourifie, 2017), and in a large class of

evolutionary games and social interactions models (Blume, 1993; Durlauf and Ioannides, 2010).

Estimation and inference for ERGMs are challenging, because the likelihood of the observed

network is proportional to an intractable normalizing constant, that cannot be computed exactly,

even in small networks. Therefore, exact Maximum Likelihood estimation (MLE) is infeasible.

The usual estimation approach, the Markov Chain Monte Carlo MLE (MCMC-MLE), consists of

simulating many networks using the model’s conditional link probabilities and approximating the

constant and the likelihood with Monte Carlo methods (Snijders, 2002; Koskinen, 2004; Chatter-

jee and Diaconis, 2013; Mele, 2017). Estimates of the MCMC-MLE converge almost surely to

the MLE if the likelihoods are well-behaved (Geyer and Thompson, 1992). However, a recent

literature has shown that the simulation methods used to compute the MCMC-MLE may have ex-

ponential slow convergence, making estimation and approximation of the likelihood impractical or

infeasible for a large class of ERGMs (Bhamidi et al., 2011; Chatterjee and Diaconis, 2013; Mele,

2017). An alternative is the Maximum Pseudo-likelihood estimator (MPLE), that finds the param-

eters that maximize the product of the conditional link probabilities of the model. While MPLE

is simple and computationally fast, the properties of the estimator are not well understood, except

in special cases, when some regularity conditions are satisfied (Boucher and Mourifie, 2017; Be-

sag, 1974); in practice MPLE may give misleading estimates when the dependence among links

is strong (Geyer and Thompson, 1992). Furthermore, since the ERGMs are exponential families,

networks with the same sufficient statistics will produce the same MLE, but may have different

MPLE.

Our work departs from the standard methods of estimation, proposing deterministic approxima-

tions of the likelihood, based on the approximated solution of a variational problem. Our strategy is

to use a mean-field algorithm to approximate the normalizing constant of the ERGM, at any given

parameter value (Wainwright and Jordan, 2008; Bishop, 2006; Chatterjee and Diaconis, 2013). We

then maximize the resulting approximate log-likelihood, with respect to the parameters. To be
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concrete, our approximation consists of using the likelihood of a simpler model with independent

links to approximate the constant of the ERGM. The mean-field approximation algorithm finds the

likelihood with independent links that minimizes the Kullback-Leibler divergence from the ERGM

likelihood. Using this likelihood with independent links, we compute an approximate normalizing

constant. We then evaluate the log-likelihood of our model, where the exact normalizing constant

is replaced by its mean-field approximation.

Our main contribution is the computation of exact bounds for the approximation error of the

normalizing constant’s mean-field estimate. Our proofs use the theoretical machinery of Chat-

terjee and Dembo (2016) for non-linear large deviations in models with intractable normalizing

constants. Using this powerful tool, we provide explicit lower and upper bounds to the error of

approximation for the mean-field normalizing constant. The bounds depend on the magnitude of

the parameters of our model and the size of link externalities (Mele, 2017; Boucher and Mourifie,

2017; Chandrasekhar, 2016; DePaula, 2017). The result holds for dense and moderately sparse

networks. Remarkably and conveniently the mean-field error converges to zero as the network

becomes large. This guarantees that for large networks, the log-normalizing constant of an ERGM

is well approximated by our mean-field log-normalizing constant.

The main implication of our main result is that we can compute bounds to the distance between

the log-likelihood of the ERGM and our approximate log-likelihood; these also converge in sup-

norm as the network grows large. As a consequence, we can use the approximated likelihood

for estimation in large networks. If the likelihood is strictly concave, it is possible to show that

our approximate estimator converges to the maximum likelihood estimator as long as the network

grows large. Furthermore, because our bounds may not be sharp, in practice convergence could be

faster than what is implied in these results.

While our method is guaranteed to perform well in large graphs, many applications involve

small networks. For example, the school networks data in the National Longitudinal Study of

Adoloscent Health (Add Health) (Boucher and Mourifie, 2017; Moody, 2001; Badev, 2013) or

the Indian villages in Banerjee et al. (2013) include on average about 200-300 nodes. To under-

stand the performance of our estimator in practice, we perform simple Monte Carlo exercises in
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networks with few hundreds nodes, comparing mean-field estimates to MCMC-MLE and MPLE.

Our Monte Carlo results show that in practice our estimator works better than the theoretical re-

sults suggest, for networks with 50 to 1000 nodes. The median mean-field approximation point

estimates are close to the true parameters, but exhibit a small bias. Both MCMC-MLE and MPLE

show a larger variability of point estimates for the two-stars and triangle parameters, measured as

median absolute deviation. When we increase the network size, all three estimators improve, as

expected. We conclude that our method’s performance is comparable to available estimators in

small networks. While our code can be made faster by exploiting efficient matrix algebra libraries

and parallelization, the CPU time for estimation is comparable to the estimators implemented in

the ergm package in R for networks with less than 200 nodes.

The main message of our theoretical results and Monte Carlo simulations is that the approxi-

mate mean-field approach is a valid alternative to existing methods for estimation of a large class

of ERGMs. We note that our theoretical bounds may not be sharp, and in practice the mean-

field algorithm may have better performance than what is implied by our conservative results, as

confirmed by our Monte Carlo experiments.

To the best of our knowledge, this paper is one of the first works in economics to use mean-

field approximations for approximate estimation of complex models. We show that our application

of variational approximations has theoretical guarantees, and we can bound the error of approxi-

mation. While similar deterministic methods have been used to provide an approximation to the

normalizing constant of the ERGM model (Chatterjee and Diaconis, 2013; Amir et al., 2012; Mele,

2017; He and Zheng, 2013; Aristoff and Zhu, 2018), we are the first to characterize the variational

approximation error for a model with covariates and its computational feasibility.

Our technique can be applied to other models in economics and social sciences. For example,

models of social interactions with binary decisions like in Blume (1993), Badev (2013), Durlauf

and Ioannides (2010), models for bundles (Fox and Lazzati, 2017), and models of choices from

menus (Kosyakova et al., 2018) have similar likelihoods with intractable normalizing constants .

Therefore our method of approximation may allow estimation of these models for large sets of

bundles or menu choices.
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The rest of the paper is organized as follows. Section 2 presents the theoretical model and

variational approximations. Section 3 contains the main theoretical results and the error bounds.

Section 4 presents the Monte Carlo results and Section 5 concludes. All the proofs and additional

Monte Carlo simulations are in the Appendix. Additional results and discussions are presented in

the Online Appendix.

2. NETWORK FORMATION MODEL AND VARIATIONAL METHODS

2.1. Exponential random graph models. The class of exponential random graphs is an impor-

tant generative model for networks and has been extensively used in applications in many disci-

plines (Wasserman and Pattison, 1996; Jackson, 2010; DePaula, 2017; Mele, 2017; Moody, 2001;

Wimmer and Lewis, 2010; Amir et al., 2012). In this paper we consider a model with nodal co-

variates, two-stars and triangles.

Our model assumes that the network consists of n heterogeneous nodes, indexed by i = 1, ..., n;

each node is characterized by a S-dimensional vector of observed attributes τi ∈ X := ⊗Sj=1Xj ,

i = 1, ..., n. The sets Xj can represent age, race, gender, income, etc.1 Let α be a n× n symmetric

matrix with elements αij := ν(τi, τj), where ν : X ×X → R is a symmetric function and let β and

γ be scalars. For ease of exposition we focus on the case in which the attributes are discrete and

finite, but our results hold when this assumption is relaxed and the number of attributes is allowed

to increase with the size of the network.

The likelihood πn(g, α, β, γ) of observing the adjacency matrix g depends on the composition

of links, the number of two-stars and the number of triangles

(2.1) πn(g;α, β, γ) =
exp [Qn(g;α, β, γ)]∑

ω∈Gn exp [Qn(ω;α, β, γ)]
,

where the function Q is called a potential function and takes the form

(2.2) Qn(g;α, β, γ) =
n∑
i=1

n∑
j=1

αijgij +
β

2n

n∑
i=1

n∑
j=1

n∑
k=1

gijgjk +
2γ

3n

n∑
i=1

n∑
j=1

n∑
k=1

gijgjkgki.

1For instance, if we consider gender and income, then S = 2, and we can take ⊗2
j=1Xj = {male,female} ×

{low, medium, high}. The sets Xj can be both discrete and continuous. For example, if we consider gender and
income, we can also take ⊗2

j=1Xj = {male,female} × [$50,000,$200,000]. Below we restrict the covariates to be
discrete, but we allow the number of types to grow with the size of the network.
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and c(α, β, γ) :=
∑

ω∈Gn exp [Qn(ω;α, β, γ)] is a normalizing constant that guarantees that like-

lihood (2.1) is a proper distribution. The second and third term of the potential function (2.2) are

the counts of two-stars and triangles in the network, rescaled by n. We rewrite (2.1) as

(2.3) πn(g;α, β, γ) = exp
{
n2 [Tn(g;α, β, γ)− ψn(α, β, γ)]

}
,

where Tn(g;α, β, γ) = Qn(g;α, β, γ)n−2 is the potential scaled by n2 and the log-normalizing

constant (scaled by n2) is ,

(2.4) ψn(α, β, γ) =
1

n2
log

∑
ω∈Gn

exp
[
n2Tn(ω;α, β, γ)

]
,

and Gn := {ω = (ωij)1≤i,j≤n : ωij = ωji ∈ {0, 1}, ωii = 0, 1 ≤ i, j ≤ n} is the set of all

binary matrices with n nodes. The re-scaling of the potential and the log-normalizing constant is

necessary for the asymptotic results, to avoid the explosion of the potential function as the size of

the network grows large.

2.2. Microeconomic equilibrium foundations. ERGMs caught the attention of economists be-

cause recent works proves a behavioral and equilibrium interpretation of likelihood (2.3).2 In

fact, these likelihoods naturally arise as equilibrium of best-response dynamics in potential games

(Blume, 1993; Monderer and Shapley, 1996; Butts, 2009; Mele, 2011).

To be concrete, let’s consider the following game. Players’ payoffs are a function of the compo-

sition of direct links, friends’ popularity and the number of common friends. The utility of network

g for player i is given by

(2.5) ui(g, τ) =
n∑
j=1

αijgij +
β

n

n∑
j=1

n∑
k=1

gijgjk +
γ

n

n∑
j=1

n∑
k=1

gijgjkgki,

Each player forms links with other nodes, maximizing utility (2.5), but taking into account the

strategies of other players. We can show that this game of network formation converges to an

exponential random graph in a stationary equilibrium, under the following assumptions:3 (1) the

2Butts (2009), Mele (2017), Chandrasekhar and Jackson (2014), Boucher and Mourifie (2017), Badev (2013), DePaula
(2017).
3See Mele (2017) or Badev (2013) for more technical details and variants of these assumptions. See also Chan-
drasekhar (2016), DePaula (2017), Chandrasekhar and Jackson (2014), Boucher and Mourifie (2017).
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network formation is sequential, with only two active players in each period; (2) two players meet

over time with probability ρij := ρ(τi, τj, g−ij) > 0, where g−ij indicate the network g but link

gij; and these meetings are i.i.d. over time; (3) before choosing whether to form or delete a link,

players receive an i.i.d. logistic shock (εij1, εij0). At time t, the link gtij is formed if

ui(g
t
ij = 1, gt−1

−ij , τ) + uj(g
t
ij = 1, gt−1

−ij , τ) + εtij1 ≥ ui(g
t
ij = 0, gt−1

−ij , τ) + uj(g
t
ij = 0, gt−1

−ij , τ) + εtij0.

Mele (2017) shows that such a model is a potential game (Monderer and Shapley, 1996) with

potential function given by equation (2.2). The probability of observing network g in the long run

is given by (2.3) (Theorem 1 in Mele (2017)), thus (2.3) describes the stationary behavior of the

model. In the long-run we observe with high probability the pairwise stable networks, where no

pair of players want to form or delete a link.4

2.3. Variational Approximations. The constant ψn(α, β, γ) in (2.4) is intractable because it is a

sum over all 2(n2) possible networks with n nodes; if there are n = 10 nodes, the sum involves

computation of 245 potential functions, which is infeasible.5 In the literature on exponential family

likelihoods with intractable normalizing constant, this problem is solved by approximating the

normalizing constant using Markov Chain Monte Carlo (Snijders, 2002; Mele, 2017; Goodreau

et al., 2009; Koskinen, 2004; Caimo and Friel, 2011; Murray et al., 2006). However, Bhamidi

et al. (2011) has shown that such methods may have exponentially slow convergence for many

ERGMs specifications.

We propose methods that avoid simulations and we find an approximate likelihood qn(g) that

minimizes the Kullback-Leibler divergence KL(qn|πn) between qn and the true likelihood πn:

KL(qn|πn) =
∑
ω∈Gn

qn(ω) log

[
qn(ω)

πn(ω;α, β)

]
=
∑
ω∈Gn

qn(ω)
[
log qn(ω)− n2Tn(ω;α, β, γ) + n2ψn(α, β, γ)

]
≥ 0.(2.6)

4In the Online Appendix E we provide more details about the microeconomic foundation of the model for the interested
reader.
5See Geyer and Thompson (1992), Murray et al. (2006), Snijders (2002) for examples.
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With some algebra we obtain a lower-bound for the constant ψn(α, β, γ)

ψn(α, β, γ) ≥ Eqn [Tn(ω;α, β, γ)] +
1

n2
H(qn) := L(qn),

whereH(qn) = −
∑

ω∈Gn qn(ω) log qn(ω) is the entropy of distribution qn, and Eqn [Tn(ω;α, β, γ)]

is the expected value of the re-scaled potential, computed according to the distribution qn.

To find the best likelihood approximation we minimize KL(qn|πn) with respect to qn, which is

equivalent to finding the supremum of the lower-bound L(qn), i.e.

(2.7) ψn(α, β, γ) = sup
qn∈Qn

L(qn) = sup
qn∈Qn

{
Eqn [Tn(ω;α, β, γ)] +

1

n2
H(qn)

}
,

where Qn is the set of all the probability distributions on Gn. We have transformed the problem of

computing an intractable sum into a variational problem, i.e. a maximization problem.

In general, problem (2.7) has no closed-form solution, thus the literature suggests to restrict Qn

to be the set of all completely factorized distribution6

(2.8) qn(g) =
∏
i,j

µ
gij
ij (1− µij)1−gij ,

where µij = Eqn(gij) = Pqn(gij = 1). This approximation is called a mean-field approximation of

the discrete exponential family. Straightforward algebra shows that the entropy of qn is additive

1

n2
H(qn) = − 1

2n2

n∑
i=1

n∑
j=1

[µij log µij + (1− µij) log(1− µij)] ,

and the expected potential can be computed as

Eqn [Tn (ω;α, β, γ)] =

∑
i

∑
j αijµij

n2
+ β

∑
i

∑
j

∑
k µijµjk

2n3
+ γ

2
∑

i

∑
j

∑
k µijµjkµki

3n3
.

6See Wainwright and Jordan (2008), Bishop (2006)
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The mean-field approximation leads to a lower bound of ψn(α, β, γ), because we restricted Qn,

and the simpler variational problem is to find a n× n symmetric matrix µ(α, β, γ) that solves

ψn(α, β, γ) ≥ ψMF
n (µ(α, β, γ))

= sup
µ∈[0,1]n2 :µij=µji,∀i,j

{
1

n2

∑
i,j

αijµij +
β

2n3

∑
i,j,k

µijµjk +
2γ

3n3

∑
i,j,k

µijµjkµki

− 1

2n2

n∑
i=1

n∑
j=1

[µij log µij + (1− µij) log(1− µij)]
}
.(2.9)

The mean-field problem is in general nonconvex and the maximization can be performed using any

global optimization method, e.g. simulated annealing or Nelder-Mead.7

3. THEORETICAL RESULTS

3.1. Convergence of the variational mean-field approximation. For finite n, the variational

mean-field approximation contains an error of approximation. In the next theorem, we provide a

lower and upper bound to the error of approximation for our model.

THEOREM 3.1. For fixed network size n, the approximation error of the variational mean-field

problem is bounded as

(3.1)
C3(β, γ)

n
≤ ψn(α, β, γ)− ψMF

n (µ(α, β, γ)) ≤ C1(α, β, γ)

(
log n

n

)1/5

+
C2(α, β, γ)

n1/2
,

where C1(α, β, γ), C2(α, β, γ) are constants depending on α, β and γ and C3(β, γ) is a constant

depending only on β, γ:

C1(α, β, γ) := c1 ·
(

max
i,j
|αij|+ |β|4 + |γ|4 + 1

)
,

C2(α, β, γ) := c2 ·
(

max
i,j
|αij|+ |β|+ |γ|+ 1

)1/2

· (1 + |β|2 + |γ|2)1/2,

C3(β, γ) := |β|+ 4|γ|,

where c1, c2 > 0 are some universal constants.

7See Wainwright and Jordan (2008) and Bishop (2006) for more details.
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The constants in Theorem 3.1 are functions of the parameters α, β and γ. The upper bound

depends on the maximum payoff from direct links and the intensity of payoff from indirect con-

nections. The lower bound only depends on the strength of indirect connections payoffs (popularity

and common friends, that is β and γ). One consequence is that our result holds when the network

is dense, but also when it is moderately sparse, in the sense that |αij|, |β| and |γ| can have moderate

growth in n instead of being bounded, and the difference of ψn and ψMF
n goes to zero if C1(α, β, γ)

grows slower than n1/5/(log n)1/5 and C2(α, β, γ) grows slower than n1/2 as n → ∞. For exam-

ple, if maxi,j |αij| = O(nδ1), |β| = O(nδ2), |γ| = O(nδ3) where δ1 <
1
5

and δ2, δ3 <
1
20

, then

ψn − ψMF
n goes to zero as n→∞. On the other hand, if the graph is too sparse, e.g. |β| = Ω(n),

|γ| = Ω(n), then ψn cannot be approximated by ψMF
n .

Our main Theorem 3.1 implies that we can approximate the log-likelihood of the ERGM using

the mean-field approximated constant.

PROPOSITION 3.1. Let `n(gn, α, β, γ) be the log-likelihood of the ERGM

`n(gn, α, β, γ) := n−2 log (πn(gn, α, β, γ)) = Tn(gn, α, β, γ)− ψn(α, β, γ),

and `MF
n (gn, α, β, γ) be the “mean-field log-likelihood” obtained by approximating ψn with ψMF

n :

`MF
n (gn, α, β, γ) := Tn(gn, α, β, γ)− ψMF

n (α, β, γ).

Then for any compact parameter space Θ,

(3.2) 0 ≤ sup
α,β,γ∈Θ

[
`MF
n − `n

]
≤ sup

α,β,γ∈Θ
C1(α, β, γ)n−1/5(log n)1/5 + sup

α,β,γ∈Θ
C2(α, β, γ)n−1/2.

Proposition 3.1 shows that as the network size grows large, the mean-field approximation of

the log-likelihood `MF
n is arbitrarily close to the ERGM log-likelihood `n. This approximation is

similar in spirit to the MCMC-MLE method, where the log-normalizing constant is approximated

via MCMC to obtain an approximated log-likelihood (Geyer and Thompson, 1992; Snijders, 2002;

DePaula, 2017; Moller and Waagepetersen, 2004). The main difference is that our approximation

is deterministic and does not require any simulation.
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Note that `MF
n = Tn − ψMF

n and `n = Tn − ψn. If `n converges to `∞ uniformly on a compact

parameter space Θ, then so does `MF
n . If `n, `MF

n and `∞ are continuous and strictly concave, θ̂n,

θ̂MF
n , the unique maximizers of `n and `MF

n will converge to the unique maximizer of `∞ and hence

θ̂n − θ̂MF
n will go to zero as n → ∞. In the Online Appendix we provide further results on the

behavior of the mean-field approximation as n → ∞, where we discuss the convergence of the

log-constant.8

The result in Proposition 3.1 can be used to bound the distance between the mean-field estimate

and the maximum likelihood estimate, for any network size rather than for large n. However, such

bounds require additional and stronger assumptions on the shape of the likelihood. Indeed, in

Appendix B, we show that a sufficient conditions for computing the bound is a strongly concave

likelihood. Under such assumption, we can use the bound in Proposition 3.1 for the log-likelihood

to provide a bound on the distance between MLE and mean-field estimator for any network size

n. However, these bounds may not be sharp, and therefore we consider them very conservative. In

the next section we show via Monte Carlo simulation that in many cases our estimator performs

better than the bounds would imply.

4. ESTIMATION EXPERIMENTS

To understand the performance of the variational approximation in smaller networks, we per-

form some Monte Carlo experiments. We compare the mean-field approximation with the stan-

dard simulation-based MCMC-MLE Geyer and Thompson (1992); Snijders (2002) and the MPLE

(Besag, 1974). Our method converges in n2 steps, while the MCMC-MLE may converge in en2

steps. The MPLE usually converges faster.

4.1. Approximation algorithm for the normalizing constant. We implemented our variational

approximation for few models in the R package mfergm, available in Github.9 We follow the

statistical machine learning literature and use an iterative algorithm that is guaranteed to converge

8The strict concavity of the likelihood is closely related to the identification of parameters in ERGM models, for
which there is a lack of general results (see Mele (2017), Chatterjee and Diaconis (2013), Aristoff and Zhu (2018) for
examples in special cases).
9See https://github.com/meleangelo/mfergm, with instructions for installation and few examples.

https://github.com/meleangelo/mfergm
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to a local maximum of the mean-field problem (Wainwright and Jordan, 2008; Bishop, 2006). The

algorithm is derived from first-order conditions of the variational mean-field problem.

Let µ∗ be the matrix that solves the variational problem (2.9). If we take the derivative with

respect to µij and equate to zero, we get

(4.1) µ∗ij =

{
1 + exp

[
−2αij − βn−1

n∑
k=1

(
µ∗jk + µ∗ki

)
− 4γn−1

n∑
k=1

µ∗jkµ
∗
ki

]}−1

The logit equation in (4.1) characterizes a system of equations, whose fixed point is a solution of

the mean-field problem. We can therefore start from a matrix µ and iterate the updates in (4.1)

until we reach a fixed point, as described in the following algorithm.

ALGORITHM 1. Approximation of log-normalizing constant. Fix parameters α, β, γ and a

relatively small tolerance value εtol. Initialize the n× n matrix µ(0) as µ(0)
ij

iid∼ U [0, 1], for all i, j.

Fix the maximum number of iterations as T . Then for each t = 0, ..., T :

Step 1. Update the entries of matrix µ(t) for all i, j = 1, ..., n

(4.2) µ
(t+1)
ij =

{
1 + exp

[
−2αij − βn−1

n∑
k=1

(
µ

(t)
jk + µ

(t)
ki

)
− 4γn−1

n∑
k=1

µ
(t)
jkµ

(t)
ki

]}−1

.

Step 2. Compute the value of the variational mean-field log-constant ψMF (t)
n as

ψMF (t)
n =

∑
i

∑
j αijµ

(t)
ij

n2
+ β

∑
i

∑
j

∑
k µ

(t)
ij µ

(t)
jk

2n3
+ γ

2
∑

i

∑
j

∑
k µ

(t)
ij µ

(t)
jkµ

(t)
ki

3n3

− 1

2n2

n∑
i=1

n∑
j=1

[
µ

(t)
ij log µ

(t)
ij + (1− µ(t)

ij ) log(1− µ(t)
ij )
]
.

Step 3. Stop at t∗ ≤ T if: ψMF (t∗)
n − ψMF (t∗−1)

n ≤ εtol. Otherwise go back to Step 1.

The algorithm is initialized at a random uniform matrix µ(0) and iteratively applies the update

(4.1) to each entry of the matrix, until the increase in the objective function is less than a tolerance

level . Since the problem is concave in each µij , this iterative method is guaranteed to find a local

maximum of (2.9).10 In our simulations we use a tolerance level of εtol = 0.0001. To improve

10There are other alternatives to the random uniform matrix. Indeed a simple starting value could be the set of
conditional probabilities of the model at parameters α, β, γ. We did not experiment with this alternative method.
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convergence we can re-start the algorithm from different random matrices, as usually done with

local optimizers.11 This step is easily parallelizable, thus preserving the order n2 convergence;

while the standard MCMC-MLE is an intrinsically sequential algorithm and cannot be parallelized.

4.2. Monte Carlo design. All the computations in this section are performed on a PC Dell T6610

with 6 Quad-core Intel i7 (48 threads) and 64GB RAM. We test our approximation using 1000

simulated networks. Each node i has a binary attribute xi, i.e. xi
iid∼ Bernoulli(0.5). Let zij = 1 if

xi = xj and zij = 0 otherwise.

tz(g) :=
1

n2

n∑
i=1

n∑
j=1

gijzij; t−z(g) :=
1

n2

n∑
i=1

n∑
j=1

gij(1− zij),(4.3)

te(g) :=
1

n2

n∑
i=1

n∑
j=1

gij; ts(g) :=
1

n3

n∑
i=1

n∑
j=1

n∑
k=1

gijgjk; tt(g) :=
1

n3

n∑
i=1

n∑
j=1

n∑
k=1

gijgjkgki,

where te(g), ts(g) and tt(g) are the fraction of links, two-stars and triangles respectively. And

tz(g) and t−z(g) are the fractions of links of the same type and different type, respectively. The

log-likelihood of the model `n(g;α, β, γ) is

(4.4) `n(g, x;α, β, γ) = α1tz(g) + α2t−z(g) + (β/2)ts(g) + (2γ/3)tt(g)− ψn(α1, α2, β, γ).

For computational convenience we rewrite model (4.4) in a slightly different but equivalent way

(4.5) `n(g, x; α̃, β, γ) = α̃1te(g) + α̃2tz(g) + (β/2)ts(g) + (2γ/3)tt(g)− ψn(α1, α2, β, γ),

where we have defined α̃1 := α2 and α̃2 := α1−α2. We use specification (4.5) in our simulations.12

To generate the artificial networks, we draw i.i.d. attributes xi ∼ Bernoulli(0.5), initialize a

network with n nodes as an Erdos-Renyi graph with probability p = eα̃1/(1 + eα̃1), and then run

11In the Monte Carlo exercises we have experimented with different numbers of re-starts of the iterative algorithm.
However, it is not clear what would be the optimal number of re-starts. A fixed number of restarts could be suboptimal.
It seems reasonable to increase this number as the network grows larger.
12There are other small differences in how we have specified the model and how we have setup computations using the
statnet package in R, that can affect the comparability of the simulation results, in particular the normalizations of
the sufficient statistics. This is handled by our mfergm package, to guarantee comparability of the estimates obtained
with MCMC-MLE, MPLE and Mean-field approximate inference.
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the Metropolis-Hastings network sampler using the simulate.ergm command in the R pack-

age ergm to sample 1000 networks, each separated by 10, 000 iterations, and after a burn-in of

10 million iterations.13 The MCMC-MLE estimator is solved using the Stochastic approxima-

tion method of Snijders (2002), where each simulation has a burnin of 100, 000 iterations of the

Metropolis-Hastings sampler and networks are sampled every 1000 iterations. The other conver-

gence parameters are kept at default of the ergm package. The MPLE estimate is obtained using

the default parameters in ergm. To be sure that our results do not depend on the initialization of the

parameters, we start each estimator at the true parameter value, thus decreasing the computational

time required for convergence. All the code is available in Github for replication.

TABLE 4.1. Monte Carlo estimates, comparison of three methods. True parameter
vector is (α̃1, α̃2, β, γ) = (−2, 1, 1, 1)

n = 50 MCMC-MLE MEAN-FIELD MPLE
α̃1 α̃2 β γ α̃1 α̃2 β γ α̃1 α̃2 β γ

median -2.002 1.024 0.716 -2.042 -2.000 0.998 1.000 0.999 -1.957 1.016 0.118 -0.584
mad 0.295 0.238 3.412 26.132 0.044 0.040 0.012 0.012 0.268 0.179 3.261 16.540
n = 100 MCMC-MLE MEAN-FIELD MPLE
median -1.991 0.991 0.886 1.183 -2.002 0.995 1.001 0.999 -1.974 0.991 0.713 1.020
mad 0.197 0.117 2.324 16.150 0.020 0.017 0.005 0.005 0.178 0.085 2.237 10.478
n = 200 MCMC-MLE MEAN-FIELD MPLE
median -2.000 1.000 1.043 0.438 -2.003 0.995 1.001 0.999 -1.990 1.000 0.853 0.657
mad 0.127 0.064 1.686 10.627 0.009 0.009 0.002 0.002 0.125 0.046 1.613 7.950
n = 500 MCMC-MLE MEAN-FIELD MPLE
median -2.000 1.001 1.000 0.706 -2.002 0.994 1.016 0.992 -1.994 1.001 0.912 0.762
mad 0.084 0.033 1.090 6.962 0.007 0.008 0.023 0.011 0.074 0.023 0.945 4.691

Results of 1000 Monte Carlo estimates using three methods. MCMC-MLE is the Monte Carlo
Maximum Likelihood estimator of Geyer and Thompson (1992), as implemented in ergm in R,
with a stochastic approximation algorithm Snijders (2002). MEAN-FIELD is our method. MPLE
is the Maximum Pseudo-Likelihood Estimate. Each network is generated with a 10 million run of
the Metropolis-Hastings sampler of the ergm command in R, sampling every 10000 iterations.
mad is the median absolute deviation.

4.3. Results. The first model has true parameter vector (α̃1, α̃2, β, γ) = (−2, 1, 1, 1) and the sum-

maries of point estimates are reported in Table 4.1. We show results for n = 50, 100, 200 and 500;

reporting median and median absolute deviation (mad) of point estimates for each parameter.

13The code is available in the Github package mfergm, and the function is simulate.model#, where # stands
for the model number: 2 is the model with γ = 0, 3 is the model with β = 0, and 4 is the model with β 6= 0 and
γ 6= 0.
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The median estimates of the mean-field approximation are quite stable and exhibit a small bias,

as is well known in the literature (Wainwright and Jordan, 2008; Bishop, 2006). The median results

for MCMC-MLE and MPLE are quite precise for α̃1 and α̃2, but vary a lot for β and γ, as shown by

the large median absolute deviation. Nonetheless the median point estimates of β and γ are slowly

converging to the true parameter vector as n increases.14 Therefore, the mean-field approximation

provides estimates in line with MPLE and MCMC-MLE, with more reliability for β and γ in these

small sample estimation exercises.

TABLE 4.2. Monte Carlo estimates, comparison of three methods. True parameter
vector is (α̃1, α̃2, β, γ) = (−3, 2, 1, 3)

n = 50 MCMC-MLE MEAN-FIELD MPLE
α̃1 α̃2 β γ α̃1 α̃2 β γ α̃1 α̃2 β γ

median -3.041 2.064 0.743 -0.512 -3.007 1.993 1.000 3.000 -3.026 2.083 0.215 1.764
mad 0.476 0.424 3.811 25.109 0.026 0.026 0.013 0.014 0.514 0.401 3.593 16.538
n = 100 MCMC-MLE MEAN-FIELD MPLE
median -3.006 2.015 0.932 0.587 -3.011 1.989 1.000 2.999 -2.991 2.018 0.682 1.773
mad 0.261 0.206 2.538 17.905 0.016 0.016 0.008 0.008 0.259 0.194 2.364 12.123
n = 200 MCMC-MLE MEAN-FIELD MPLE
median -3.012 2.007 1.069 2.807 -3.011 1.988 1.000 2.999 -3.005 2.011 0.932 2.988
mad 0.158 0.117 1.822 11.360 0.008 0.008 0.004 0.004 0.156 0.109 1.714 8.144
n = 500 MCMC-MLE MEAN-FIELD MPLE
median -2.998 2.000 0.951 3.047 -3.011 1.988 1.002 2.999 -2.998 2.001 0.921 3.117
mad 0.096 0.061 1.276 7.191 0.003 0.003 0.002 0.002 0.083 0.049 1.077 5.378

Notes: see notes for Table 4.1.

TABLE 4.3. Monte Carlo estimates, comparison of three methods. True parameter
vector is (α̃1, α̃2, β, γ) = (−3, 1, 2, 1)

n = 500 MCMC-MLE MEAN-FIELD MPLE
α̃1 α̃2 β γ α̃1 α̃2 β γ α̃1 α̃2 β γ

median -3.001 0.998 2.028 -19.034 -3.000 1.000 2.000 1.000 -2.996 1.000 1.488 -7.923
mad 0.086 0.065 7.205 165.600 0.011 0.011 0.0001 0.0001 0.078 0.044 6.345 84.681
n = 1000 MCMC-MLE MEAN-FIELD MPLE

α̃1 α̃2 β γ α̃1 α̃2 β γ α̃1 α̃2 β γ
median -2.999 1.004 1.809 -0.716 -3.000 1.000 2.000 1.000 -2.999 1.002 1.757 0.540
mad 0.057 0.037 4.891 125.293 0.005 0.005 0.0001 0.0001 0.049 0.022 4.113 61.328

Notes: see notes for Table 4.1. The case with n = 1000 contains only 500 monte carlo
replications.

14Some of the bias in the mean-field approximation may be due to the fact that we only initialize µ once in these
simulations.
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The second set of results is for a model with parameters (α̃1, α̃2, β, γ) = (−3, 2, 1, 3), see Table

4.2. The pattern is similar to Table 4.1. Indeed the mean-field estimator seems to work relatively

well in most cases, especially for the estimates of β and γ. For parameters α̃1, α̃2 our mean-field

estimator (median) bias persists as n increases. Finally, we also report a simulation with a larger

network with n = 500, 1000 in Table 4.3. The results are the same as the other tables and the

mean-field approximation is robustly close to the true parameter values in most simulations.

These Monte Carlo experiments suggests that our approximation method performs well in prac-

tice. We conclude that in most cases the mean-field approximation algorithm works better than our

conservative theoretical results suggest.15

5. CONCLUSIONS AND FUTURE WORK

We have shown that for a large class of exponential random graph models (ERGM), we can

approximate the normalizing constant of the likelihood using a mean-field variational approxima-

tion algorithm (Wainwright and Jordan, 2008; Bishop, 2006; Chatterjee and Diaconis, 2013; Mele,

2017). Our theoretical results use nonlinear large deviations methods (Chatterjee and Dembo,

2016) to bound the error of approximation, showing that it converges to zero as the network grows.

Our estimation method consists of replacing the log-normalizing constant in the log-likelihood

of the ERGM with the value approximated by the mean-field algorithm; we then find the param-

eters that maximize such approximate log-likelihood. Since our approximated constant converges

to the true constant in large networks, the approximate log-likelihood converges to the correct log-

likelihood in sup-norm, as the network becomes large. If the likelihoods are well-behaved and not

too flat around the maximizers, we can also show that our estimate converges to MLE.

Using an iterative procedure to find the approximate mean-field constant, we compare our

method to MCMC-MLE and MPLE (Snijders, 2002; Boucher, 2015; Besag, 1974; DePaula, 2017)

in a simple Monte Carlo study for small networks. The mean-field approximation exhibits a small

bias, but the median estimates are similar to MCMC-MLE and MPLE. Theoretically, our method

15While these results are encouraging, in Appendix we report some example of non-convergence of the mean-field
algorithm, mostly due to our iterative algorithm getting trapped in a local maximum in some simulations.
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converges in a number of steps proportional to the number of potential links of a network, while

MCMC-MLE could be exponentially slow.

While these results are encouraging, there are several open problems and possible research di-

rections. First, it is not clear that the mean-field estimates are consistent. Our small Monte Carlo

seem to indicate that there is a persistent bias term, but there is no general proof in this setting

along the lines of Bickel et al. (2013) for stochastic block models. Second, it is not clear that the

ERGM model is identified for all parameter values. Indeed some results in this literature suggest

otherwise (Chatterjee and Diaconis, 2013; Mele, 2017; Boucher and Mourifie, 2017). A promis-

ing research avenue for the future is the use of the large n mean-field approximation to understand

identification, similarly to what has been done with graph limits in Chatterjee and Diaconis (2013).

Third, while the mean-field approximation is simple and we are able to compute the approximation

errors, our lower and upper bounds may not be sharp. This raises the question of whether there is

another factorization (like in structured mean-field) that leads to better approximations and faster

convergence (Xing et al., 2003). We hope that our work will stimulate additional research and

more applications of this class of approximations.
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APPENDIX

A.1. Proof of Theorem 3.1. In this proof we will try to follow closely the notation in Chatterjee

and Dembo (2016). Suppose that f : [0, 1]N → R is twice continuously differentiable in (0, 1)N ,

so that f and all its first and second order derivatives extend continuously to the boundary. Let ‖f‖

denote the supremum norm of f : [0, 1]N → R. For each i and j, denote

(A.1) fi :=
∂f

∂xi
, fij :=

∂2f

∂xi∂xj
,

and let

(A.2) a := ‖f‖, bi := ‖fi‖, cij := ‖fij‖.

Given ε > 0, D(ε) is the finite subset of RN so that for any x ∈ {0, 1}N , there exists d =

(d1, . . . , dN) ∈ D(ε) such that

(A.3)
N∑
i=1

(fi(x)− di)2 ≤ Nε2.

Let us define

(A.4) F := log
∑

x∈{0,1}N
ef(x),

and for any x = (x1, . . . , xN) ∈ [0, 1]N ,

(A.5) I(x) :=
N∑
i=1

[xi log xi + (1− xi) log(1− xi)].

In the proof we rely on Theorem 1.5 in Chatterjee and Dembo (2016) that we reproduce in

Theorem A.1 to help the reader:

THEOREM A.1 (Chatterjee and Dembo (2016)). For any ε > 0,

(A.6) sup
x∈[0,1]N

{f(x)− I(x)} − 1

2

N∑
i=1

cii ≤ F ≤ sup
x∈[0,1]N

{f(x)− I(x)}+ E1 + E2,
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where

(A.7) E1 :=
1

4

(
N

N∑
i=1

b2
i

)1/2

ε+ 3Nε+ log |D(ε)|,

and

E2 := 4
(∑N

i=1(acii + b2
i ) + 1

4

∑N
i,j=1(ac2

ij + bibjcij + 4bicij)
)1/2

(A.8)

+1
4

(∑N
i=1 b

2
i

)1/2 (∑N
i=1 c

2
ii

)1/2

+ 3
∑N

i=1 cii + log 2.

We will use the Theorem A.1 to derive the lower and upper bound of the mean-field approxima-

tion problem. Our results extend Theorem 1.7. in Chatterjee and Dembo (2016) from the ERGM

with two-stars and triangles to the model that allows nodal covariates. Notice that in our case the

N of the theorem is the number of links, i.e. N =
(
n
2

)
. Let

(A.9) Zn :=
∑

xij∈{0,1},xij=xji,1≤i<j≤n

e
∑

1≤i,j≤n αijxij+
β
2n

∑
1≤i,j,k≤n xijxjk+ 2γ

3n

∑
1≤i,j,k≤n xijxjkxki ,

be the normalizing factor and also define

Ln := sup
xij∈[0,1],xij=xji,1≤i<j≤n

{
1

n2

∑
i,j

αijxij +
β

2n3

∑
i,j,k

xijxjk +
2γ

3n3

∑
i,j,k

xijxjkxki(A.10)

− 1

n2

∑
1≤i<j≤n

[xij log xij + (1− xij) log(1− xij)]
}
.

Notice that n−2Zn = ψn and Ln = ψMF
n .

For our model, the function f : [0, 1](
n
2) → R is defined as

(A.11) f(x) =
n∑
i=1

n∑
j=1

αijxij +
β

2n

n∑
i=1

n∑
j=1

n∑
k=1

xijxjk +
2γ

3n

n∑
i=1

n∑
j=1

n∑
k=1

xijxjkxki.
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Then, we can compute that,

a = ‖f‖ ≤
n∑
i=1

n∑
j=1

|αij|+
1

2
|β|n2 +

2

3
|γ|n2(A.12)

≤ n2

[
max
i,j
|αi,j|+

1

2
|β|+ 2

3
|γ|
]
.

Let k ∈ N, and H be a finite simple graph on the vertex set [k] := {1, . . . , k}. Let E be the set

of edges of H and |E| be its cardinality. For a function T : [0, 1](
n
2) → R

(A.13) T (x) :=
1

nk−2

∑
q∈[n]k

∏
{`,`′}∈E

xq`q`′ ,

Chatterjee and Dembo (2016) (Lemma 5.1.) showed that, for any i < j, i′ < j′,

(A.14)
∥∥∥∥ ∂T∂xij

∥∥∥∥ ≤ 2|E|,

and

(A.15)
∥∥∥∥ ∂2T

∂xij∂xi′j′

∥∥∥∥ ≤


4|E|(|E| − 1)n−1 if |{i, j, i′, j′}| = 2 or 3,

4|E|(|E| − 1)n−2 if |{i, j, i′, j′}| = 4.

Therefore, by (A.14), we can compute that

(A.16) b(ij) =

∥∥∥∥ ∂f∂xij
∥∥∥∥ ≤ 2 max

i,j
|αij|+ 2|β|+ 8|γ|.

By (A.15), we can also compute that

c(i,j)(i′j′) =

∥∥∥∥ ∂2f

∂xij∂xi′j′

∥∥∥∥(A.17)

≤


4
(

1
2
|β|2(2− 1) + 2

3
|γ|3(3− 1)

)
n−1 if |{i, j, i′, j′}| = 2 or 3,

4
(

1
2
|β|2(2− 1) + 2

3
|γ|3(3− 1)

)
n−2 if |{i, j, i′, j′}| = 4,

=


4 (|β|+ 4|γ|)n−1 if |{i, j, i′, j′}| = 2 or 3,

4 (|β|+ 4|γ|)n−2 if |{i, j, i′, j′}| = 4.
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Next, we compute that

∂f

∂xij
= 2αij +

∂

∂xij

[
β

2n

n∑
i=1

n∑
j=1

n∑
k=1

xijxjk +
2γ

3n

n∑
i=1

n∑
j=1

n∑
k=1

xijxjkxki

]
.(A.18)

Let T1 and T2 be defined as

(A.19) T1(x) :=
1

n

n∑
i=1

n∑
j=1

n∑
k=1

xijxjk, T2(x) :=
1

n

n∑
i=1

n∑
j=1

n∑
k=1

xijxjkxki.

Then, we have

(A.20)
∂f

∂xij
= 2αij +

β

2

∂T1

∂xij
+

2γ

3

∂T2

∂xij
.

Chatterjee and Dembo (2016) (Lemma 5.2.) showed that for the T1 and T2 defined above, there

exist a set D1(ε) and D2(ε) satisfying the criterion (A.3) (with f = T1 and f = T2) so that

|D1(ε)| ≤ exp

{
C̃12434n

ε4
log

C̃22434

ε4

}
= exp

{
C̃164n

ε4
log

C̃264

ε4

}
,(A.21)

|D2(ε)| ≤ exp

{
C̃13434n

ε4
log

C̃23434

ε4

}
= exp

{
C̃138n

ε4
log

C̃238

ε4

}
,(A.22)

where C̃1 and C̃2 are universal constants. Let us define

(A.23)

D(ε) :=

{
2αij +

β

2
d1 +

2γ

3
d2 : d1 ∈ D1

(
2

β
· ε√

2

)
, d2 ∈ D2

(
3

2γ
· ε√

2

)
, 1 ≤ i ≤ j ≤ n

}
.

Hence, D(ε) satisfies the criterion (A.3) and

|D(ε)| ≤ 1

2
n(n+ 1)

∣∣∣D1

(√
2ε/β

)∣∣∣ · ∣∣∣D2

(
3ε/2
√

2γ
)∣∣∣(A.24)

≤ 1

2
n(n+ 1) exp

{
C̃164β4n

4ε4
log

C̃264β4

4ε4

}
exp

{
C̃13826γ4n

34ε4
log

C̃23826γ4

34ε4

}
.
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Therefore, by recalling E1 from (A.7), we get

E1 =
1

4

((
n

2

) ∑
1≤i<j≤n

b2
(ij)

)1/2

ε+ 3

(
n

2

)
ε+ log |D(ε)|(A.25)

≤
[

1

4

(
2 max

i,j
|αij|+ 2|β|+ 8|γ|

)
+ 3

](
n

2

)
ε

+ log

(
1

2
n(n+ 1)

)
+
C̃164β4n

4ε4
log

C̃264β4

4ε4
+
C̃13426γ4n

ε4
log

C̃23426γ4

ε4

≤ C1(α, β, γ)n2ε+
C1(α, β, γ)n

ε4
log

C1(α, β, γ)

ε4

= C1(α, β, γ)n9/5(log n)1/5,

by choosing ε = ( logn
n

)1/5, where C1(α, β, γ) is a constant depending only on α, β, γ:

(A.26) C1(α, β, γ) := c1

(
max
i,j
|αij|+ |β|4 + |γ|4 + 1

)
,

where c1 > 0 is some universal constant. To see why we can chooseC1(α, β, γ) as in (A.26) so that

(A.25) holds, we first notice that it follows from (A.25) that we can choose C1(α, β, γ) such that

C1(α, β, γ) ≥ max{c̃1 maxij |αij|+ c̃2|β|+ c̃3|γ|+ c̃4, c̃5β
4, c̃6γ

4}, where c̃1, c̃2, c̃3, c̃4, c̃5, c̃6 > 0

are some universal constants. Note that max{c̃1 maxij |αij| + c̃2|β| + c̃3|γ| + c̃4, c̃5β
4, c̃6γ

4} ≤

c̃1 maxij |αij| + c̃2|β| + c̃3|γ| + c̃4 + c̃5β
4 + c̃6γ

4 ≤ c1 (maxi,j |αij|+ |β|4 + |γ|4 + 1) for some

universal constant c1 > 0. Thus, we can take C1(α, β, γ) as in (A.26).

We can also compute from (A.8) that

E2 = 4

( ∑
1≤i<j≤n

(ac(ij)(ij) + b2
(ij))

+
1

4

∑
1≤i<j≤n,1≤i′<j′≤n

(
ac2

(ij)(i′j′) + b(ij)b(i′j′)c(ij)(i′j′) + 4b(ij)c(ij)(i′j′)

))1/2

+
1

4

( ∑
1≤i<j≤n

b2
(ij)

)1/2( ∑
1≤i<j≤n

c2
(ij)(ij)

)1/2

+ 3
∑

1≤i<j≤n

c(ij)(ij) + log 2,
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so that

E2 ≤ 4

{(
n

2

)(
n

(
max
i,j
|αij|+

1

2
|β|+ 2

3
|γ|
)

4(|β|+ 4|γ|) +

(
2 max

i,j
|αij|+ 2|β|+ 8|γ|

)2
)

+
1

4
n2

[
max
i,j
|αij|+

1

2
|β|+ 2

3
|γ|
]

·

[(
n

2

)(
n− 2

2

)
42(|β|+ 4|γ|)2n−4 +

((
n

2

)2

−
(
n

2

)(
n− 2

2

))
42(|β|+ 4|γ|)2n−2

]

+

(
2 max

i,j
|αij|+ 2|β|+ 8|γ|

)
·
(

max
i,j
|αij|+

1

2
|β|+ 2

3
|γ|
)

·

[(
n

2

)(
n− 2

2

)
4(|β|+ 4|γ|)n−2 +

((
n

2

)2

−
(
n

2

)(
n− 2

2

))
4(|β|+ 4|γ|)n−1

]}1/2

+
1

4

(
n

2

)(
2 max

i,j
|αij|+ 2|β|+ 8|γ|

)
4(|β|+ 4|γ|)n−1 + 3

(
n

2

)
4(|β|+ 4|γ|)n−1 + log 2

≤ C2(α, β, γ)n3/2,

where we used the formulas for a, b(ij), and c(ij)(i′j′) that we derived earlier and the combinatorics

identities:

∑
1≤i<j≤n,1≤i′<j′≤n,|{i,j,i′,j′}|=4

1 =
∑

1≤i<j≤n

∑
1≤i′<j′≤n,|{i,j,i′,j′}|=4

1 =

(
n

2

)(
n− 2

2

)
,

∑
1≤i<j≤n,1≤i′<j′≤n,|{i,j,i′,j′}|=2 or 3

1 =

(
n

2

)2

−
(
n

2

)(
n− 2

2

)
,

and C2(α, β, γ) is a constant depending only on α, β, γ that can be chosen as:

(A.27) C2(α, β, γ) := c2

(
max
i,j
|αij|+ |β|+ |γ|+ 1

)1/2

(1 + |β|2 + |γ|2)1/2,

where c2 > 0 is some universal constant.

Finally, to get lower bound, notice that

(A.28)
1

2

∑
1≤i<j≤n

c(ij)(ij) ≤
1

2

(
n

2

)
4(|β|+ 4|γ|)n−1 ≤ C3(β, γ)n,

where C3(β, γ) is a constant depending only on β, γ and we can simply take C3(β, γ) = |β|+4|γ|.
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A.2. Proof of Proposition 3.1. We can approximate ψn by ψMF
n as seen in Theorem 3.1, and as

a result, we can approximate the log-likelihood as follows.

`n(g, α, β, γ) :=
1

n2
log(πn(g, α, β, γ)) = Tn(g, α, β, γ)− ψn(α, β, γ),

by the mean-field log-likelihood:

`MF
n (g, α, β, γ) := Tn(g, α, β, γ)− ψMF

n (α, β, γ),

Then the difference between the mean-field likelihood and the ERGM likelihood is bounded uni-

formly over g ∈ G, for any α, β, γ:

0 ≤ `MF
n (g, α, β, γ)− `n(g, α, β, γ) ≤ C1(α, β, γ)n−1/5(log n)1/5 + C2(α, β, γ)n−1/2.

Therefore, for any compact Θ, we have

0 ≤ sup
α,β,γ∈Θ

[
`MF
n (g, α, β, γ)− `n(g, α, β, γ)

]
≤ sup

α,β,γ∈Θ

[
C1(α, β, γ)n−1/5(log n)1/5 + C2(α, β, γ)n−1/2

]
≤ sup

α,β,γ∈Θ
C1(α, β, γ)n−1/5(log n)1/5 + sup

α,β,γ∈Θ
C2(α, β, γ)n−1/2.

This proves the result.

APPENDIX B. A BOUND BETWEEN MLE AND MEAN-FIELD ESTIMATOR

We use the bounds on the likelihoods to also derive a bound on the distance between the MLE

and our mean-field estimator, when the MLE exists and it is well-behaved. Because our bounds

may not be sharp, this proves to be quite hard. We therefore, consider a local version of this

convergence. We know that the ERGM likelihood is concave in parameters because it is an expo-

nential family. We also know that the mean-field log-constant is convex in parameters16, therefore

the approximate log-likelihood is also concave. However, to get a bound on the distance between

16ψMF
n is convex in (α, β, γ) by its definition in (2.9) since the expression inside the supremum in (2.9) is affine in

(α, β, γ) and supremum over any affine function is convex.
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estimates we need well-behaved objective functions, with enough curvature at least close to their

maximizers. If the objective functions is too flat, the distance between the estimator may be too

large in terms of our upper bounds.17 Therefore we assume that the likelihood and its mean-field

approximation have enough curvature.

PROPOSITION B.1. Assume (α, β, γ) lives on a compact set Θ. Let θ̂n := (α̂n, β̂n, γ̂n) and

θ̂MF
n := (α̂MF

n , β̂MF
n , γ̂MF

n ) be the maximizers of `n and `MF
n , respectively, in the interior of Θ.

Moreover, we assume that ψn and ψMF
n are differentiable and µn- and µMF

n -strongly convex in

(α, β, γ), respectively, on Θ, where µn > 0 and µMF
n > 0. Then

(B.1)

‖θ̂n − θ̂MF
n ‖ ≤ 2

(µn + µMF
n )

1
2

[
sup

α,β,γ∈Θ
C

1
2
1 (α, β, γ)

(
log n

n

) 1
10

+ sup
α,β,γ∈Θ

C
1
2
2 (α, β, γ)n−

1
4

]
,

where C1 and C2 are defined in Theorem 3.1 and ‖ · ‖ denotes the Euclidean norm.

In Proposition B.1, if µn and µMF
n goes to zero sufficiently fast as n goes zero, then the bound

in (B.1) may not go to zero as n goes to zero. If for example µn, µMF
n are uniformly bounded from

below, and both supα,β,γ∈ΘC1(α, β, γ) and supα,β,γ∈ΘC2(α, β, γ) are O(1), then ‖θ̂n − θ̂MF
n ‖ =

O(n−1/10(log n)1/10).

B.1. Proof of Proposition B.1. We assume that ψn (resp. ψMF
n ) is differentiable and µn-strongly

convex (resp. µMF
n -strongly convex) in θ := (α, β, γ) ∈ Θ. Note that

`n = Tn − ψn, `MF
n = Tn − ψMF

n ,

and Tn is linear in θ = (α, β, γ), we have that `n (resp. `MF
n ) is differentiable and µn-strongly

concave in θ := (α, β, γ) ∈ Θ so that for any x, y ∈ Θ,

(B.2) `n(y) ≤ `n(x) +∇`n(x)T (y − x)− µn
2
‖y − x‖2,

17Geyer and Thompson (1992) mentions similar problems arise for the MCMC-MLE. Indeed, as mentioned above, the
MLE may not exist. For example, if the number of triangles is zero in the data, it will be impossible to estimate γ and
the MCMC-MLE may give an approximation with solution that tends to infinity.
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and in particular,

`n(θ̂MF
n ) ≤ `n(θ̂n) +∇`n(θ̂n)T (θ̂MF

n − θ̂n)− µn
2
‖θ̂MF

n − θ̂n‖2(B.3)

= `n(θ̂n)− µn
2
‖θ̂MF

n − θ̂n‖2,

and similarly, for any x, y ∈ Θ,

(B.4) `MF
n (y) ≤ `MF

n (x) +∇`MF
n (x)T (y − x)− µn

2
‖y − x‖2,

and in particular,

`MF
n (θ̂n) ≤ `MF

n (θ̂MF
n ) +∇`MF

n (θ̂MF
n )T (θ̂n − θ̂MF

n )− µMF
n

2
‖θ̂n − θ̂MF

n ‖2(B.5)

= `MF
n (θ̂MF

n )− µMF
n

2
‖θ̂n − θ̂MF

n ‖2.

Adding the inequalities (B.3) and (B.5), we get

‖θ̂n − θ̂MF
n ‖2 ≤ 2

µMF
n + µn

[(
`MF
n (θ̂MF

n )− `n(θ̂MF
n )

)
+
(
`n(θ̂n)− `MF

n (θ̂n)
)]

≤ 4

µMF
n + µn

sup
θ∈Θ
|`MF
n (θ)− `n(θ)|.

By applying Theorem 3.1, we get

‖θ̂n − θ̂MF
n ‖ ≤ 2

(µn + µMF
n )

1
2

[
sup

α,β,γ∈Θ
C1(α, β, γ)n−

1
5 (log n)

1
5 + sup

α,β,γ∈Θ
C2(α, β, γ)n−

1
2

] 1
2

≤ 2

(µn + µMF
n )

1
2

[
sup

α,β,γ∈Θ
C

1
2
1 (α, β, γ)n−

1
10 (log n)

1
10 + sup

α,β,γ∈Θ
C

1
2
2 (α, β, γ)n−

1
4

]
,

where the last step is due to the inequality
√
x+ y ≤

√
x +
√
y for any x, y ≥ 0. The proof is

complete.

APPENDIX C. ADDITIONAL SIMULATION RESULTS

C.1. No covariates, edges and two-stars model. We have estimated a model with no covariates.

This corresponds to a model in which α̃2 = 0 or α1 = α2 = α. The results of our simulations for

small networks are in Table C.1. Our method performs relatively well in this simpler case. Indeed
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in this case there are results that would allow us to solve the variational problem in closed form

for large n (Chatterjee and Diaconis, 2013; Mele, 2017; Aristoff and Zhu, 2018; Radin and Yin,

2013). The MPLE and MCMC-MLE median estimate seems to converge to the true value as we

increase n, but our approximation seems to perform slightly better here.

TABLE C.1. Monte Carlo estimates, comparison of three methods. True parameter
vector is (α̃1, α̃2, β) = (−2, 0, 1)

n = 50 MCMC-MLE MEAN-FIELD MPLE
α̃1 α̃2 β α̃1 α̃2 β α̃1 α̃2 β

median -2.063 0.016 -0.324 -2.021 0.007 0.999 -1.983 0.018 -1.006
0.05 -2.692 -0.614 -23.828 -2.412 -0.372 0.975 -2.439 -0.368 -34.177
0.95 -1.363 0.657 22.738 -1.783 0.413 1.015 -1.449 0.401 14.465
n = 100 MCMC-MLE MEAN-FIELD MPLE

α̃1 α̃2 β α̃1 α̃2 β α̃1 α̃2 β
median -1.970 -0.042 0.221 -1.981 -0.017 1.000 -1.949 -0.023 -1.231
0.05 -2.241 -0.333 -13.226 -2.101 -0.194 0.993 -2.168 -0.196 -14.402
0.95 -1.602 0.249 16.316 -1.874 0.134 1.012 -1.643 0.142 9.328
n = 200 MCMC-MLE MEAN-FIELD MPLE

α̃1 α̃2 β α̃1 α̃2 β α̃1 α̃2 β
median -2.012 -0.005 1.483 -1.998 0.002 1.000 -2.003 -0.001 1.225
0.05 -2.214 -0.184 -9.515 -2.067 -0.093 0.997 -2.160 -0.095 -9.682
0.95 -1.796 0.161 12.179 -1.935 0.091 1.003 -1.790 0.095 8.784

Notes. See notes for Table 4.1.

C.2. Model with 2-stars. In this subsection we report estimates of a model where the triangle

term is excluded from the specification ( γ = 0 in log-likelihood (4.5)). In Table C.2 we report

results for 100 simulations of a model with (α̃1, α̃2, β) = (−2, 1, 2). We run simulations for

networks of size n = 50, 100, 200, to show how our method compares to MCMC-MLE and MPLE

when the size of the network grows. In general, we expect more precise results as n grows large.

The results are encouraging and the mean-field approximation seems to behave as expected.

Indeed, the median estimate is very close to the true parameters that generate the data. As the size

of the network grows from n = 50 to n = 200, both MCMC-MLE and MPLE also improve in

precision. The fastest method in terms of computational time is the MPLE. This is because the

MPLE’s speed depends on the number of parameters. Our mean-field approximation is as fast as

the MCMC-MLE.
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TABLE C.2. Monte Carlo estimates, comparison of three methods. True parameter
vector is (α̃1, α̃2, β) = (−2, 1, 2)

n = 50 MCMC-MLE MEAN-FIELD MPLE
α̃1 α̃2 β α̃1 α̃2 β α̃1 α̃2 β

median -2.015 0.999 2.303 -1.993 1.000 2.004 -1.996 0.998 1.820
0.05 -2.433 0.641 -1.085 -2.060 0.885 1.916 -2.325 0.780 -2.556
0.95 -1.666 1.337 6.118 -1.905 1.090 2.087 -1.573 1.273 4.783

n = 100 MCMC-MLE MEAN-FIELD MPLE
α̃1 α̃2 β α̃1 α̃2 β α̃1 α̃2 β

median -1.995 1.012 1.932 -1.980 1.011 2.011 -1.980 1.010 1.783
0.05 -2.189 0.861 0.701 -2.032 0.969 1.992 -2.175 0.901 0.329
0.95 -1.833 1.157 3.314 -1.944 1.044 2.088 -1.816 1.141 2.867

n = 200 MCMC-MLE MEAN-FIELD MPLE
α̃1 α̃2 β α̃1 α̃2 β α̃1 α̃2 β

median -2.000 1.009 1.938 -1.986 1.005 2.016 -1.997 1.007 1.930
0.05 -2.182 0.925 0.843 -2.004 0.932 1.999 -2.176 0.950 0.592
0.95 -1.882 1.087 4.119 -1.935 1.028 2.214 -1.847 1.069 3.541

Notes. See notes for Table 4.1.

The second set of Monte Carlo experiments is reported in Table C.3, where the data are generated

by parameter vector (α̃1, α̃2, β) = (−2, 1, 3). The pattern is similar to the previous table, but the

mean field estimates exhibit a little more bias.

TABLE C.3. Monte Carlo estimates, comparison of three methods. True parameter
vector is (α̃1, α̃2, β) = (−2, 1, 3)

n = 50 MCMC-MLE MEAN-FIELD MPLE
α̃1 α̃2 β α̃1 α̃2 β α̃1 α̃2 β

median -1.978 1.010 2.742 -1.958 1.026 3.025 -1.921 1.016 2.357
0.05 -2.308 0.745 1.342 -2.045 0.878 2.938 -2.201 0.823 -0.742
0.95 -1.689 1.229 4.466 -1.811 1.141 3.468 -1.547 1.202 4.288

n = 100 MCMC-MLE MEAN-FIELD MPLE
α̃1 α̃2 β α̃1 α̃2 β α̃1 α̃2 β

median -2.005 1.002 3.022 -1.851 1.091 3.166 -1.997 1.001 3.009
0.05 -2.116 0.892 2.665 -2.274 0.866 2.998 -2.098 0.924 2.514
0.95 -1.902 1.110 3.414 -1.670 1.861 4.092 -1.895 1.096 3.425

n = 200 MCMC-MLE MEAN-FIELD MPLE
α̃1 α̃2 β α̃1 α̃2 β α̃1 α̃2 β

median -2.003 1.000 2.959 -1.923 1.030 3.107 -1.984 1.000 2.847
0.05 -2.151 0.934 2.314 -2.059 0.922 3.000 -2.104 0.951 2.096
0.95 -1.902 1.064 3.944 -1.836 1.164 4.222 -1.861 1.039 3.666

Notes. See notes for Table 4.1.
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C.3. Model with triangles. The second set of simulations involves a model with no two-stars,

that is β = 0, in Table C.4. In this specification our mean-field approximation seems to do better

than the other estimators, at least for this small networks.

TABLE C.4. Monte Carlo estimates, comparison of three methods. True parameter
vector is (α̃1, α̃2, γ) = (−2, 1,−2)

n = 50 MCMC-MLE MEAN-FIELD MPLE
α̃1 α̃2 γ α̃1 α̃2 γ α̃1 α̃2 γ

median -2.024 1.026 -13.959 -2.000 1.005 -2.000 -2.031 1.012 -9.804
0.05 -2.384 0.622 -60.419 -2.321 0.168 -6.425 -2.398 0.758 -45.881
0.95 -1.689 1.457 49.585 -0.739 2.246 -1.777 -1.809 1.394 21.696

n = 100 MCMC-MLE MEAN-FIELD MPLE
α̃1 α̃2 γ α̃1 α̃2 γ α̃1 α̃2 γ

median -2.006 1.019 -6.053 -1.967 1.035 -2.007 -2.002 1.015 -4.980
0.05 -2.164 0.832 -35.171 -3.472 0.951 -7.368 -2.124 0.876 -23.937
0.95 -1.824 1.183 27.361 -1.388 3.763 -1.910 -1.890 1.153 13.519

n = 200 MCMC-MLE MEAN-FIELD MPLE
α̃1 α̃2 γ α̃1 α̃2 γ α̃1 α̃2 γ

median -2.007 1.001 -1.002 -1.972 1.031 -2.006 -2.003 1.000 -1.913
0.05 -2.083 0.901 -23.049 -2.014 1.008 -2.115 -2.061 0.929 -15.721
0.95 -1.931 1.095 16.760 -1.473 1.636 -1.983 -1.952 1.072 9.153

Notes. See notes for Table 4.1.
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TABLE C.5. Monte Carlo estimates, comparison of three methods. True parameter
vector is (α̃1, α̃2, β, γ) = (−2, 1,−1,−1)

n = 50 MCMC-MLE MEAN-FIELD MPLE
α̃1 α̃2 β γ α̃1 α̃2 β γ α̃1 α̃2 β γ

median -2.008 1.023 -1.256 -4.943 -1.977 1.030 -1.018 -1.002 -1.959 1.015 -2.032 -3.296
mad 0.320 0.267 4.898 43.074 0.153 0.165 0.144 0.154 0.307 0.191 4.532 24.826
n = 100 MCMC-MLE MEAN-FIELD MPLE
median -1.996 1.004 -1.138 -3.173 -1.932 1.177 -1.057 -1.021 -1.974 1.006 -1.566 -1.489
mad 0.219 0.133 3.364 28.410 0.567 0.553 0.335 0.346 0.207 0.093 3.119 16.695
n = 200 MCMC-MLE MEAN-FIELD MPLE
median -1.995 1.007 -1.155 -0.980 -1.603 1.645 -1.317 -1.078 -1.987 1.003 -1.340 -1.308
mad 0.133 0.069 2.098 18.167 0.559 0.794 0.656 0.558 0.127 0.047 2.064 11.196
n = 500 MCMC-MLE MEAN-FIELD MPLE
median -1.998 1.002 -1.070 -1.315 -1.682 1.836 -1.431 -1.155 -1.991 1.000 -1.113 -1.227
mad 0.084 0.033 1.496 10.897 0.805 0.849 0.776 0.883 0.079 0.020 1.340 7.036

Notes: see notes for Table 4.1.

TABLE C.6. Monte Carlo estimates, comparison of three methods. True parameter
vector is (α̃1, α̃2, β, γ) = (−2, 1,−2, 3)

n = 50 MCMC-MLE MEAN-FIELD MPLE
α̃1 α̃2 β γ α̃1 α̃2 β γ α̃1 α̃2 β γ

median -2.005 1.024 -2.368 -4.197 -1.955 1.037 -2.022 2.998 -1.958 1.017 -3.006 -0.198
mad 0.349 0.292 5.767 46.688 0.095 0.085 0.088 0.082 0.307 0.196 4.707 26.076
n = 100 MCMC-MLE MEAN-FIELD MPLE
median -2.000 0.995 -2.333 1.560 -1.909 1.082 -2.100 2.983 -1.972 0.997 -2.708 2.617
mad 0.216 0.145 3.429 31.810 0.151 0.147 0.199 0.130 0.195 0.099 3.221 17.184
n = 200 MCMC-MLE MEAN-FIELD MPLE
median -1.998 0.997 -2.062 1.847 -1.593 1.512 -2.849 2.711 -1.985 0.999 -2.321 2.326
mad 0.129 0.073 2.302 22.032 0.565 0.677 1.195 0.594 0.124 0.049 2.167 13.057
n = 500 MCMC-MLE MEAN-FIELD MPLE
median -2.004 1.002 -1.944 2.531 -1.523 1.605 -3.493 2.557 -2.002 1.002 -2.059 2.786
mad 0.091 0.038 1.579 11.813 0.782 0.726 1.472 0.982 0.080 0.024 1.472 8.068

Notes: see notes for Table 4.1.

C.4. Some examples of nonconvergence. In Tables C.5 and C.6 we show examples in which our

mean-field approximation performs worse than the alternative estimators. There are several possi-

ble explanations for this poor convergence. First, it may be that we are not finding the maximizer

of the approximation variational problem (2.9), given the local nature of updates (4.1). In these

simulations we do not start the matrix µ(0) at different initial values, therefore we converge to a

local maximum that may not be global. Our package mfergm allows the researcher to initialize
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µ(0) at different random starting points. This can improve convergence. In principle we should

increase the number of re-starts as n grows, as it is known that these models may have multiple

modes. Ideally, one can use a Nelder-Mead or Simulated Annealing algorithm to find the maxi-

mizer of the variational problem, but this is more time-consuming. All these ideas lead to simple

parallelization of our package’s functions that are beyond the scope of the present work. Second,

the tolerance level that we use εtol = 0.0001 may be too large. Third, the likelihood may exhibit a

phase transition and thus a small difference in parameters may cause a large change in the behavior

of the model. We conjecture that some of these issues are related to identification and we plan to

explore this in future work.

C.5. A note on computational speed. In our Monte Carlo exercises, we note that the computa-

tional speed of the three estimators is similar for small networks. For n = 100, the mean-field

approximation takes about 3.5s to estimate the model, while an MCMC-MLE with a burnin of

100, 000 and sampling every 1000 iterations takes approximately 5.5s and the MPLE takes about

1.7s. For n = 50 the estimates take 1.6s for mean-field, 4s for MCMC-MLE and 1.2s for MPLE.

However, for larger networks, our code is computationally inefficient and results in much larger

computational time than using the built-in functions in the ergm package in R for MCMC-MLE

and MPLE. We have experimented with faster iterative routines that could speed up the approx-

imate solution of the variational mean-field problem, but these are not fully stable. Additionally

our code does not make efficient use of the memory, as the matrix µ is dense and we are not using

efficient matrix algebra libraries to speed up the computation. We believe that such improvement

in our benchmark code will make computational time comparable to MPLE.
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ONLINE APPENDIX - NOT FOR PUBLICATION

APPENDIX D. ASYMPTOTIC RESULTS

In this section we consider the model as n→∞. We have seen previously that the log normal-

izing constant ψn(α, β, γ) can be approximated by ψMF
n (µ(α, β, γ)) by the mean-field approxima-

tion, where µ(α, β, γ) solves the optimization problem in (2.9) and ψMF
n (µ(α, β, γ)) is its optimal

value, where we recall that

ψMF
n (µ(α, β, γ)) = sup

µ∈[0,1]n2 :µij=µji,∀i,j

{
1

n2

∑
i,j

αijµij +
β

2n3

∑
i,j,k

µijµjk +
2γ

3n3

∑
i,j,k

µijµjkµki

− 1

2n2

∑
i,j

[µij log µij + (1− µij) log(1− µij)]

}
,

We will study the limit as n→∞. Before we proceed, we need a representation of the vector α

in the infinite network. The following assumption guarantee that we can switch from the discrete

to the continuum.

ASSUMPTION D.1. Assume that

αij = α (i/n, j/n) ,

where α(x, y) : [0, 1]2 → R is a deterministic exogenous function that is symmetric, i.e., α(x, y) =

α(y, x). 18

Since we have n players, the number of types for the players must be finite, although it may

grow as n grows. αij are symmetric, and can take at most n(n+1)
2

values. As n → ∞, the number

of types can become infinite and α(x, y) may take infinitely many values. On the other hand, in

terms of practical applications, finitely many values often suffice 19.

18To ease the notations, we project ⊗S
j=1Xj onto [0, 1] and the function α(τi, τj) defined previously is now re-defined

from [0, 1]2 to R.
19If an entry of the vector τi is continuous, we can always transform the variable in a discrete vector using thresholds.
For example, if Xj = [$50,000,$200,000], we can bucket the incomes into three levels, low: [$50,000,$100,000),
medium [$100,000,$150,000) and high: [$150,000, $200,000].
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FIGURE D.1. Examples of function α(x, y).
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The figure provides several examples of possible partitions of the net benefit function α(x, y) with
finite covariates. The asymptotic version of this function is defined over the unit square.

ASSUMPTION D.2. We assume that α(x, y) is unifomly bounded in x and y:

(D.1) sup
(x,y)∈[0,1]2

|α(x, y)| <∞.

As a simple example, let us consider gender: the population consists of males and female agents.

For example, half of the nodes (population) are males, say i = 1, 2, . . . , n
2

and the other half are

females, i = n
2

+ 1, n
2

+ 2, . . . , n.20 That means, α(x, y) takes three values according to the three

20Here, we assume without loss of generality that n is an even number.
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regions:

{
(x, y) : 0 < x, y < 1

2

}
,{

(x, y) : 1
2
< x, y < 1

}
,{

(x, y) : 0 < x < 1
2
< y < 1

}⋃{
(x, y) : 0 < y < 1

2
< x < 1

}
,

and these three regions correspond precisely to pairs: male-male, female-female, and male-female.

This example is represented in Figure D.1(C).

The work of Chatterjee and Diaconis (2013) show that the variational problem in (2.7) translates

into an analogous variational problem for the graph limit.21 In the special case α(x, y) ≡ α, it is

shown in Chatterjee and Diaconis (2013) that as n→∞ the log-constant of the ERGM converges

to the solution of the variational problem (D.3), that is

(D.2) ψn(α, β, γ)→ ψ(α, β, γ),

where

ψ(α, β, γ) = sup
h∈W

{
α

ˆ 1

0

ˆ 1

0

h(x, y)dxdy +
β

2

ˆ 1

0

ˆ 1

0

ˆ 1

0

h(x, y)h(y, z)dxdydz

(D.3)

+
2γ

3

ˆ 1

0

ˆ 1

0

ˆ 1

0

h(x, y)h(y, z)h(z, x)dxdydz − 1

2

ˆ 1

0

ˆ 1

0

I(h(x, y))dxdy

}
,

where

(D.4) W :=
{
h : [0, 1]2 → [0, 1], h(x, y) = h(y, x), 0 ≤ x, y ≤ 1

}
,

and we define the entropy function:

I(x) := x log x+ (1− x) log(1− x), 0 ≤ x ≤ 1,

with I(0) = I(1) = 0.

21See also Mele (2017) for similar results in a directed network.
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In essence the first three terms in (D.3) correspond to the expected potential function in the

continuum, while the last term in (D.3) corresponds to the entropy of the graph limit.

We will show that (D.2) holds with

ψ(α, β, γ) = sup
h∈W

{ˆ 1

0

ˆ 1

0

α(x, y)h(x, y)dxdy +
β

2

ˆ 1

0

ˆ 1

0

ˆ 1

0

h(x, y)h(y, z)dxdydz

(D.5)

+
2γ

3

ˆ 1

0

ˆ 1

0

ˆ 1

0

h(x, y)h(y, z)h(z, x)dxdydz − 1

2

ˆ 1

0

ˆ 1

0

I(h(x, y))dxdy

}
,

The function h in the expressions above is known as the graphon from the graph limits literature

22, large deviations literature for random graphs23 and analysis of the resulting variational prob-

lem.24 and it is a representation of an infinite network, where h is a simple symmetric function

h : [0, 1]2 → [0, 1], and h(x, y) = h(y, x). Note that our goal is to approximate ψMF
n and hence

ψn by ψ, whose definition involves the function h, and we call such a function a graphon in the

rest of the paper, to be consistent with the literature, while we are not attempting here to establish

a theory of graph limits to allow nodal covariates. That is an interesting research direction worth

investigating in the future, but is out of the scope of the current paper.

The following proposition shows that for a model with finitely many types the variational ap-

proximation is asymptotically exact.

PROPOSITION D.1. Under Assumptions D.1 and D.2, as n→∞

ψn(α, β, γ)→ ψ(α, β, γ),

where ψ(α, β, γ) is defined in (D.5).

Proof. It follows directly from Theorem 3.1 and ψMF
n (µ(α, β, γ))→ ψ(α, β, γ), as n→∞. �

The proposition states that as n becomes large, we can approximate the exponential random

graph using a model with independent links (conditional on finitely many types). This is a very

22See Lovasz (2012), Borgs et al. (2008)
23See Chatterjee and Varadhan (2011), Chatterjee and Diaconis (2013)
24See Aristoff and Zhu (2018), Radin and Yin (2013) among others.
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useful result because the latter approximation is simple and tractable, while the exponential ran-

dom graph model contains complex dependence patterns that make estimation computationally

expensive.

D.1. Approximation of the limit log normalizing constant. We can analyze and provide an ap-

proximation of the log-constant in the large network limit. The variational formula for ψ(α, β, γ)

is an infinite-dimensional problem which is intractable in most cases. Nevertheless, we can al-

ways bound the infinite dimensional problem with finite dimensional ones (both lower and upper

bounds), at least in the absence of transitivity. For details, see Proposition F.2 in the Online Ap-

pendix. The lower-bound in Proposition F.2 coincides with the structured mean-field approach of

Xing et al. (2003). In a model with homogeneous players, the lower-bound corresponds to the

computational approximation of graph limits implemented in He and Zheng (2013).

In the case of extreme homophily, we can also obtain finite-dimensional approximation, see

Proposition F.1 in the Online Appendix.

D.2. Characterization of the variational problem. We recall that the log normalizing constant

in the n→∞ limit is given by the variational problem:

ψ(α, β, γ) = sup
h∈W

{ˆ 1

0

ˆ 1

0

α(x, y)h(x, y)dxdy +
β

2

ˆ 1

0

ˆ 1

0

ˆ 1

0

h(x, y)h(y, z)dxdydz(D.6)

+
2γ

3

ˆ 1

0

ˆ 1

0

ˆ 1

0

h(x, y)h(y, z)h(z, x)dxdydz

− 1

2

ˆ 1

0

ˆ 1

0

[h(x, y) log h(x, y) + (1− h(x, y)) log(1− h(x, y))] dxdy

}
.

PROPOSITION D.2. The optimal graphon h that solves the variational problem (D.6) satisfies

the Euler-Lagrange equation:

(D.7)

2α(x, y) + β

ˆ 1

0

h(x, y)dx+ β

ˆ 1

0

h(x, y)dy + 4γ

ˆ 1

0

h(x, z)h(y, z)dz = log

(
h(x, y)

1− h(x, y)

)
.
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Proof. The proof follows from the same argument as in Theorem 6.1. in Chatterjee and Diaconis

(2013). �

COROLLARY 1. If α(x, y) is not a constant function, then the optimal graphon h that solves the

variational problem (D.6) is not a constant function.

Proof. If the optimal graphon h is a constant function, then (D.7) implies that α is a constant

function. Contradiction. �

In general, if a graphon satisfies the Euler-Lagrange equation, that only indicates that the graphon

is a stationary point, and it is not clear if the graphon is the local maximizer, local minimizer or

neither. In the next result, we will show that when β is negative, any graphon satisfying the Euler-

Lagrange equation in our model is indeed a local maximizer.

PROPOSITION D.3. Assume that β < 0 and γ = 0. If h is a graphon that satisfies the Euler-

Lagrange equation (D.7), then h is a local maximizer of the variational problem (D.6).

Proof. Let us define

Λ[h] :=

ˆ 1

0

ˆ 1

0

α(x, y)h(x, y)dxdy +
β

2

ˆ 1

0

ˆ 1

0

ˆ 1

0

h(x, y)h(y, z)dxdydz(D.8)

− 1

2

ˆ 1

0

ˆ 1

0

[h(x, y) log h(x, y) + (1− h(x, y)) log(1− h(x, y))] dxdy.

Let h satisfy (D.7) and for any symmetric function g and ε > 0 sufficiently small, we have

Λ[h+ εg]− Λ[h](D.9)

= ε2

[
β

2

ˆ 1

0

(ˆ 1

0

g(x, y)dy

)2

dx− 1

4

ˆ 1

0

ˆ 1

0

I ′′(h(x, y))g2(x, y)dxdy

]
+O(ε3)

= ε2

[
β

2

ˆ 1

0

(ˆ 1

0

g(x, y)dy

)2

dx− 1

4

ˆ 1

0

ˆ 1

0

g2(x, y)

h(x, y)(1− h(x, y))
dxdy

]
+O(ε3),

and since β < 0, we conclude that h is a local maximizer in (D.6). �
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Remark D.1. In general, the variational problem for the graphons and the corresponding Euler-

Lagrange equation (D.7) does not yield a closed form solution. In the special case β = γ = 0,

(D.10) ψ(α, 0, 0) = sup
h∈W

{¨
[0,1]2

α(x, y)h(x, y)dxdy − 1

2

¨
[0,1]2

I(h(x, y))dxdy

}
,

where I(x) := x log x + (1 − x) log(1 − x) and it is easy to see that the optimal graphon h(x, y)

is given by h(x, y) = e2α(x,y)

e2α(x,y)+1
, and therefore, ψ(α, 0, 0) = 1

2

˜
[0,1]2

log(1 + e2α(x,y))dxdy.

APPENDIX E. DETAILS OF EQUILIBRIUM ECONOMIC FOUNDATIONS

E.1. Setup and preferences. Consider a population of n heterogeneous players (the nodes), each

characterized by an exogenous type τi ∈ ⊗Sj=1Xj , i = 1, ..., n. The attribute τi is an S-dimensional

vector and the sets Xj can represent age, race, gender, income, etc. 25 We collect all τi’s in an n×S

matrix τ . The network’s adjacency matrix g has entries gij = 1 if i and j are linked; and gij = 0

otherwise. The network is undirected, i.e. gij = gji, and gii = 0, for all i’s.26 The utility of player

i is

(E.1) ui(g, τ) =
n∑
j=1

αijgij +
β

n

n∑
j=1

n∑
k=1

gijgjk,

where αij := ν(τi, τj) are symmetric functions ν : ⊗Sj=1Xj×⊗Sj=1Xj → R and ν(τi, τj) = ν(τj, τi)

for all i, j; and β is a scalar. The utility of player i depends on the number of direct links, each

weighted according to a function ν of the types τ . This payoff structure implies that the net benefit

of forming a direct connection depends on the characteristics of the two individuals involved in the

link.

Players also care about the number of links that each of their direct contacts have formed.27 For

example, when β > 0, there is an incentive to form links to people that have many friends, e.g.

popular kids in school. On the other hand, when β < 0 the incentive is reversed. For example, one

25For instance, if we consider gender and income, then S = 2, and we can take ⊗2
j=1Xj = {male,female} ×

{low, medium, high}. The sets Xj can be both discrete and continuous. For example, if we consider gender and
income, we can also take ⊗2

j=1Xj = {male,female} × [$50,000,$200,000]. Below we restrict the covariates to be
discrete, but we allow the number of types to grow with the size of the network.
26Extensions to directed networks are straightforward (see Mele (2017)).
27The normalization of β by n is necessary for the asymptotic analysis.
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can think that forming links to a person with many connections could decrease our visibility and

decrease the effectiveness of interactions. Similar utility functions have been used extensively in

the empirical network formation literature.28

The preferences in (E.1) include only direct links and friends’ populatity. However, we can also

include other types of link externalities. For example, in many applications the researcher is inter-

ested in estimating preferences for common neighbors. This is an important network statistics to

measure transitity and clustering in networks. In our model we can easily add an utility component

to capture these effects.

(E.2) ui(g, τ) =
n∑
j=1

αijgij +
β

n

n∑
j=1

n∑
k=1

gijgjk +
γ

n

n∑
j=1

n∑
k=1

gijgjkgki,

These preferences include an additional parameter γ that measures the effect of common neighbors.

The potential function for this model is

(E.3) Qn(g;α, β) =
n∑
i=1

n∑
j=1

αijgij +
β

2n

n∑
i=1

n∑
j=1

n∑
k=1

gijgjk +
2γ

3n

n∑
j=1

n∑
k=1

gijgjkgki.

In general, all the results that we show below extend to more general utility functions that include

payoffs for link externalities similar to (2.5).

The probability that i and j meet can depend on their networks: it could be a function of their

common neighbors, or a function of their degrees and centralities, for example. In Assumption E.1,

we assume that the existence of a link between i and j does not affect their probability of meeting.

This is because we prove the existence and functional form of the stationary distribution (2.3)

using the detailed balance condition, which is not satisfied if we allow the meeting probabilities to

depend on the link between i and j.

The model can easily be extended to directed networks and the results on equilibria and long-

run stationary distribution will hold. The results about the approximations of the likelihood shown

below will also hold for directed networks, with minimal modifications of the proofs.

28See Mele (2017), Sheng (2012), DePaula et al. (2018), Chandrasekhar and Jackson (2014), Badev (2013), Butts
(2009).
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Finally, while our model generates dense graphs, the approximations using variational methods

and nonlinear large deviations that we develop in the rest of the paper also work in moderately

sparse graphs. More precisely, the utility of player i is given by

(E.4) ui(g, τ) =
n∑
j=1

α
(n)
ij gij +

β(n)

n

n∑
j=1

n∑
k=1

gijgjk +
γ(n)

n

n∑
j=1

n∑
k=1

gijgjkgki,

where |α(n)
ij |, |β(n)| and |γ(n)| can have moderate growth in n instead of being bounded. We will

give more details later in our paper. 29

Example E.1. (Homophily) Consider a model with ν(τi, τj) = V − c(τi, τj), where V > 0 is

the benefit of a link and c(τi, τj) (= c(τj, τi)) is the cost of the link between i and j. To model

homophily in this framework let the cost function be

(E.5) c(τi, τj) =


c if τi = τj,

C if τi 6= τj.

For example, consider the parameterization 0 < c < V < C and β = 0, γ = 0. In this case

the players have no incentive to form links with agents of other groups. On the other hand, if we

have 0 < c < V < C and β, γ > 0, also links across groups will be formed, as long as β, γ are

sufficiently large.

Example E.2. (Social Distance Model) Let the payoff from direct links be a function of the social

distance among the individuals. Formally, let ν(τi, τj) := ηd(τi, τj)−c, where d(τi, τj) is a distance

function, η is a parameter that determines the sensitivity to the social distance and c > 0 is the

cost of forming a link.30 The case with η < 0 represents a world where individuals prefer linking to

similar agents and η > 0 represents a world where individuals prefer linking with people at larger

social distance. Note that even when η < 0, if we have β, γ > 0 sufficiently large, individuals may

still have an incentive to form links with people at larger social distance.

29See Chatterjee and Dembo (2016) for additional applications of nonlinear large deviations.
30See Iijima and Kamada (2014) for a more general example of such model.
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E.2. Meetings and equilibrium. The network formation process follows a stochastic best-response

dynamics:31 in each period t, two random players meet with probability ρij; upon meeting they

have the opportunity to form a link (or delete it, if already in place). Players are myopic: when

they form a new link, they do not consider how the new link will affect the incentives of the other

player in the future evolution of the network.

ASSUMPTION E.1. The meeting process is a function of types and the network. Let g−ij indicate

the network g without considering the link gij . Then the probability that i and j meet is

(E.6) ρij := ρ(τi, τj, g−ij) > 0

for all pairs i and j, and i.i.d. over time.

Assumption E.1 implies that the meeting process can depend on covariates and the state of the

network. For example, if two players have many friends in common they may meet with high

probability; or people that share some demographics may meet more often. Crucially, every pair

of players has a strictly positive probability of meeting. This guarantees that each link of the

network has the opportunity of being revised.

Upon meetings, players decide whether to form or delete a link by maximizing the sum of their

current utilities, i.e. the total surplus generated by the relationship. We are implicitly assuming

that individuals can transfer utilities. When deciding whether to form a new link or deleting an

existing link, players receive a random matching shock εij that shifts their preferences.

At time t, the links gij is formed if

ui(gij = 1, g−ij, τ)+uj(gij = 1, g−ij, τ)+εij(1) ≥ ui(gij = 0, g−ij, τ)+uj(gij = 0, g−ij, τ)+εij(0) .

We make the following assumptions on the matching value.

ASSUMPTION E.2. Individuals receive a logistic shock before they decide whether to form a link

(i.i.d. over time and players).
31See Blume (1993), Mele (2017), Badev (2013).
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The logistic assumption is standard in many discrete choice models in economics and statistics

(Train (2009)).

We can now characterize the equilibria of the model, following Mele (2017) and Chandrasekhar

and Jackson (2014). In particular, we can show that the network formation is a potential game

(Monderer and Shapley (1996)).

PROPOSITION E.1. The network formation is a potential game, and there exists a potential

function Qn(g;α, β) that characterizes the incentives of all the players in any state of the network

(E.7) Qn(g;α, β) =
n∑
i=1

n∑
j=1

αijgij +
β

2n

n∑
i=1

n∑
j=1

n∑
k=1

gijgjk +
2γ

3n

n∑
i=1

n∑
j=1

n∑
k=1

gijgjkgki.

Proof. The proposition follows the same lines as Proposition 1 in Mele (2017) and it is omitted for

brevity. �

The potential function Qn(g;α, β) is such that, for any gij

Qn(g;α, β)−Qn(g − ij;α, β) = ui(g) + uj(g)− [ui(g − ij) + uj(g − ij)] .

Thus we can keep track of all players’ incentives using the scalarQn(g;α, β). It is easy to show that

all the pairwise stable (with transfers) networks are the local maxima of the potential function.32

The sequential network formation follows a Glauber dynamics, therefore converging to a unique

stationary distribution.

THEOREM E.1. In the long run, the model converges to the stationary distribution πn, defined

as

(E.8) πn(g;α, β) =
exp [Qn(g;α, β)]∑
ω∈G exp [Qn(ω;α, β)]

= exp
{
n2 [Tn(g;α, β)− ψn(α, β)]

}
,

where Tn(g;α, β) = n−2Qn(g;α, β),

(E.9) ψn(α, β) =
1

n2
log
∑
ω∈G

exp
[
n2Tn(ω;α, β)

]
,

32A network g is pairwise stable with transfers if: (1) gij = 1⇒ ui(g, τ) + uj(g, τ) ≥ ui(g − ij, τ) + uj(g − ij, τ)
and (2) gij = 0 ⇒ ui(g, τ) + uj(g, τ) ≥ ui(g + ij, τ) + uj(g + ij, τ); where g + ij represents network g with the
addition of link gij and network g − ij represents network g without link gij . See Jackson (2010) for more details.
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and G := {ω = (ωij)1≤i,j≤n : ωij = ωji ∈ {0, 1}, ωii = 0, 1 ≤ i, j ≤ n}.

Proof. The proof is an extension of Theorem 1 in Mele (2017). See also Chandrasekhar and

Jackson (2014) and Butts (2009). �

Notice that the likelihood (2.3) corresponds to an ERGM model with heterogeneous nodes and

two-stars. As a consequence our model inherits all the estimation and identification challenges of

the ERGM model.

APPENDIX F. SPECIAL CASE: THE EDGE-STAR MODEL

The general solution of the variational problem (D.3) is complicated. However, there are some

special cases where we can characterize the solution with extreme detail. These examples show

how we can solve the variational approximation in stylized settings, and we use them to explain

how the method works in practice. In this section, we consider the special case in the absence of

transitivity, i.e. γ = 0 and we get further results for the edge-star model.

F.1. Extreme homophily. We can exploit homophily to obtain a tractable approximation. Sup-

pose that there are M types in the population. The cost of forming links among individuals of the

same group is finite, but there is a large cost of forming links among people of different groups

(potentially infinite). We show that in this case the normalizing constant can be approximated

by solving M independent univariate maximization problems. In the special case of extreme ho-

mophily, our model converges to a block-diagonal model.

PROPOSITION F.1. Let 0 = a0 < a1 < · · · < aM = 1 be a given sequence. Assume that

(F.1) α(x, y) = αmm, if am−1 < x, y < am, m = 1, 2, . . . ,M.

and α(x, y) ≤ −K otherwise is a given function. Let ψ(α, β, 0;−K) be the variational problem

for the graphons and ψ(α, β, 0;−∞) = limK→∞ ψ(α, β, 0;−K). Then, we have

(F.2) ψ(α, β, 0;−∞) =
M∑
m=1

(am − am−1)2 sup
0≤x≤1

{
αmmx+

β

2
x2 − 1

2
I(x)

}
.
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Proof. First, observe that

ψ(α, β, 0;−∞)(F.3)

= sup
h∈W−

{ M∑
i=1

αi

¨
[ai−1,ai]2

h(x, y)dxdy +
β

2

ˆ 1

0

ˆ 1

0

h(x, y)h(y, z)dxdydz

− 1

2

M∑
i=1

¨
[ai−1,ai]2

I(h(x, y))dxdy

}

= sup
h∈W−

{ M∑
i=1

αi

¨
[ai−1,ai]2

h(x, y)dxdy +
β

2

M∑
i=1

ˆ ai

ai−1

(ˆ ai

ai−1

h(x, y)dy

)2

dx

− 1

2

M∑
i=1

¨
[ai−1,ai]2

I(h(x, y))dxdy

}

=
M∑
i=1

sup
h:[ai−1,ai]

2→[0,1]
h(x,y)=h(y,x)

{
αi

¨
[ai−1,ai]2

h(x, y)dxdy +
β

2

ˆ ai

ai−1

(ˆ ai

ai−1

h(x, y)dy

)2

dx

− 1

2

¨
[ai−1,ai]2

I(h(x, y))dxdy

}
,

where

(F.4) W− :=

{
h ∈ W : h(x, y) = 0 for any (x, y) /∈

M⋃
i=1

[ai−1, ai]
2

}
.

By taking h to be a constant on [ai−1, ai]
2, it is clear that

(F.5) ψ(α, β, 0;−∞) ≥
M∑
i=1

(ai − ai−1)2 sup
0≤x≤1

{
αix+

β

2
x2 − 1

2
I(x)

}
.
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By Jensen’s inequality

ψ(α, β, 0;−∞) ≤
M∑
i=1

sup
h:[ai−1,ai]

2→[0,1]
h(x,y)=h(y,x)

{
αi

ˆ ai

ai−1

(ˆ ai

ai−1

h(x, y)dy

)
dx(F.6)

+
β

2

ˆ ai

ai−1

(ˆ ai

ai−1

h(x, y)dy

)2

dx

− 1

2
(ai − ai−1)

ˆ ai

ai−1

I

(
1

ai − ai−1

ˆ ai

ai−1

h(x, y)dy

)
dx

}

≤
M∑
i=1

(ai − ai−1)2 sup
0≤x≤1

{
αix+

β

2
x2 − 1

2
I(x)

}
.

�

The net benefit function α(x, y) assumed in the Proposition is shown in Figure D.1(D). Essen-

tially this result means that with extreme homophily, we can approximate the model, assuming

perfect segregation: thus we can independently solve the variational problem of each type. This

approach is computationally very simple, since each variational problem becomes a univariate

maximization problem.

The solution of such univariate problem has been studied and characterized in previous work by

Chatterjee and Diaconis (2013), Radin and Yin (2013), Aristoff and Zhu (2018) and Mele (2017).

It can be shown that the solutions µ∗m, where m = 1, ..,M , are the fixed point of equations

(F.7) µm =
exp [αmm + βµm]

1 + exp [αmm + βµm]
,

for each group m, and βµ∗m(1 − µ∗m) < 1. The global maximizer µ∗m is unique except on a phase

transition curve {(αmm, β) : αmm + β = 0, αmm < −1}, see e.g. Radin and Yin (2013); Aristoff

and Zhu (2018). It is shown in Chatterjee and Diaconis (2013) that the network of each group

corresponds to an Erdős-Rényi graph with probability of a link equal to µ∗m.

F.2. Analytically Tractable Bounds. In this section, for the edge-star model, we provide analyt-

ically tractable bounds for ψ(α, β, γ) when γ = 0.
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PROPOSITION F.2. Let γ = 0 and 0 = a0 < a1 < · · · < aM−1 < aM = 1 be a given sequence.

Let us assume that

α(x, y) = αml, if am−1 < x < am and al−1 < y < al, where 1 ≤ m, l ≤M.

Then, we have

sup
0≤uml≤1

uml=ulm,1≤m,l≤M

M∑
m=1

(am − am−1)

{ M∑
l=1

(al − al−1)αmluml

+
β

2

(
M∑
l=1

(al − al−1)uml

)2

− 1

2

M∑
l=1

(al − al−1)I(uml)

}

≤ ψ(α, β, 0) ≤
M∑
m=1

(am − am−1) sup
0≤uml≤1
1≤l≤M

{ M∑
l=1

(al − al−1)αmluml +
β

2

(
M∑
l=1

(al − al−1)uml

)2

− 1

2

M∑
l=1

(al − al−1)I(uml)

}
.

Proof. To compute the lower and upper bounds, let us define

(F.8) uij(x) =
1

aj − aj−1

ˆ aj

aj−1

h(x, y)dy, for any ai−1 < x < ai.

We can compute that

(F.9)
¨

[0,1]2
α(x, y)h(x, y)dxdy =

M∑
i=1

M∑
j=1

(aj − aj−1)

ˆ ai

ai−1

αijuij(x)dx.

Moreover,

β

2

ˆ 1

0

ˆ 1

0

ˆ 1

0

h(x, y)h(y, z)dxdydz =
β

2

ˆ 1

0

(ˆ 1

0

h(x, y)dy

)2

dx(F.10)

=
β

2

M∑
i=1

ˆ ai

ai−1

(
M∑
j=1

(aj − aj−1)uij(x)

)2

dx.
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By Jensen’s inequality, we can also compute that

1

2

ˆ 1

0

ˆ 1

0

I(h(x, y))dxdy =
1

2

M∑
i=1

ˆ ai

ai−1

[
M∑
j=1

ˆ aj

aj−1

I(h(x, y))dy

]
dx

(F.11)

=
1

2

M∑
i=1

ˆ ai

ai−1

[
M∑
j=1

(aj − aj−1)
1

aj − aj−1

ˆ aj

aj−1

I(h(x, y))dy

]
dx

≥ 1

2

M∑
i=1

ˆ ai

ai−1

[
M∑
j=1

(aj − aj−1)I

(
1

aj − aj−1

ˆ aj

aj−1

h(x, y)dy

)]
dx

=
1

2

M∑
i=1

ˆ ai

ai−1

M∑
j=1

(aj − aj−1)I(uij(x))dx

Hence, by (F.9), (F.10), (F.11), we get

ψ(α, β, 0) ≤
M∑
i=1

M∑
j=1

(aj − aj−1)

ˆ ai

ai−1

αijuij(x)dx+
β

2

M∑
i=1

ˆ ai

ai−1

(
M∑
j=1

(aj − aj−1)uij(x)

)2

dx

− 1

2

M∑
i=1

ˆ ai

ai−1

M∑
j=1

(aj − aj−1)I(uij(x))dx

≤
M∑
i=1

(ai − ai−1) sup
0≤uij≤1
1≤j≤M

{ M∑
j=1

(aj − aj−1)αijuij +
β

2

(
M∑
j=1

(aj − aj−1)uij

)2

− 1

2

M∑
j=1

(aj − aj−1)I(uij)

}

On the other hand, by restricting the supremum over the graphons h(x, y)

(F.12) h(x, y) = uij, if ai−1 < x < ai and aj−1 < y < aj , where 1 ≤ i, j ≤M,
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where (uij)1≤i,j≤M is a symmetric matrix of the constants, and optimize over all the possible values

0 ≤ uij ≤ 1, we get the lower bound:

ψ(α, β, 0) ≥ sup
0≤uij≤1

uij=uji,1≤i,j≤M

M∑
i=1

(ai − ai−1)

{ M∑
j=1

(aj − aj−1)αijuij(F.13)

+
β

2

(
M∑
j=1

(aj − aj−1)uij

)2

− 1

2

M∑
j=1

(aj − aj−1)I(uij)

}
.

�
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