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Abstract. We study an equilibrium model of sequential network formation with heteroge-
neous players. The payoffs depend on the number and composition of direct connections, but
also the number of indirect links. We show that the network formation process is a potential
game and in the long run the model converges to an exponential random graph (ERGM).
Since standard simulation-based inference methods for ERGMs could have exponentially
slow convergence, we propose an alternative deterministic method, based on a variational
approximation of the likelihood. We compute bounds for the approximation error for a given
network size and we prove that our variational method is asymptotically exact, extending
results from the large deviations and graph limits literature to allow for covariates in the
ERGM. A simple Monte Carlo shows that our deterministic method provides more robust
estimates than standard simulation based inference.
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1. Introduction

In this paper we study an equilibrium model of network formation with heterogeneous
agents, and provide variational methods to approximate the likelihood. We contribute to the
literature on the formation and evolution of social and economic networks, whose structure
and composition has been shown to have important implications for economic performance,
health outcomes, social mobility, the diffusion of information, criminal behavior and other
socioeconomic outcomes. The spread of online social media has increased the availability
of network data, however, the estimation and identification of structural models of network
formation pose formidable econometric challenges (Jackson (2008), Sheng (2012), Graham
(2014), Leung (2014), Menzel (2016), Chandrasekhar (2016), Mele (2017), dePaula (forth-
coming)).

We develop a game theoretical equilibrium model of network formation, where individuals’
make sequential decisions to form or delete ties, weighing benefits and costs of each link.1

Players are heterogeneous : each individual is characterized by a set of characteristics, e.g.
race, gender, income, etc. Players’ payoffs depend on the number and composition of their
links. In addition, players receive utility from the number of links formed by their direct
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Leung and Demian Pouzo for comments and suggestions. The second author is partially supported by NSF
Grant DMS-1613164.
1For a survey of strategic models of network formation, see Jackson (2008).
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neighbors. We can easily generalize this payoff function to include additional link external-
ities, like common friends, or cliques of four or more people: most of our results will hold
without much modification in the proofs. While similar payoff functions have been used in
the network economics literature (e.g. DePaula et al. (2014), Sheng (2012), Leung (2014),
Chandrasekhar and Jackson (2014), Menzel (2016), Mele (2017)), in our model the network
is formed sequentially: in each period two random players meet and receive a logistic match-
ing shock. Conditional on the meeting and the value of the matching shock, they decide
whether to form a link (or delete it) by maximizing the sum of their payoffs.2 This network
formation protocol is consistent with a standard pairwise stable equilibrium with transfers.3

We show that this network formation model is a potential game: all the incentives of the
players can be summarized by an aggregate function of the state of the network, called a
potential.4 We prove that the sequence of networks generated through the random matching
and the endogenous linking decisions converges to a unique stationary equilibrium. That is,
in the long-run, the likelihood of observing a specific network configuration follows a discrete
exponential distribution. As a consequence, our model converges to an Exponential Ran-
dom Graph model (ERGM) (Wasserman and Pattison (1996), Wasserman and Faust (1994),
Frank and Strauss (1986), Snijders (2002)). The latter is a random network formation model
that assumes the probability of observing a specific network configuration is proportional
to an exponential function of network statistics. Such model is a workhorse for empirical
applications in statistics and social sciences, perhaps due to its extreme flexibility and the
availability of estimation packages in open source software (Snijders (2002), Moody (2001),
Goodreau et al. (2009), Wimmer and Lewis (2010)).

Our likelihood depends on an intractable normalizing constant that is impossible to com-
pute exactly. The ERGM literature bypasses this problem and computes an approximate
likelihood using Markov Chain Monte Carlo simulations.5 However, it can be shown that
for many models of interest, these simulations may converge very slowly, making estimation
infeasible. Bhamidi et al. (2011) show that the standard Gibbs sampler used for simulation
of ERGMs may converge exponentially slow.6 Chatterjee and Diaconis (2013) and Mele
(2017) show that this is the case even when the ERGM is asymptotically equivalent to a
model with independent links.

To overcome these computational challenges, we develop alternative deterministic methods
of approximations for the intractable likelihood of the ERGM. We focus on the case where
the number of types (covariates) is finite, but is allowed to increase with the size of the

2See also Mele (2017), Badev (2013), Butts (2009), Christakis et al. (2010) for models of sequential network
formation in the economics literature.
3See Jackson (2008) for several notions of equilibrium in the economic network literature.
4Monderer and Shapley (1996) define potential games and their equilibria. In the network literature, there
is a relationship between potential games and network equilibria, as described in Butts (2009), Mele (2017),
Chandrasekhar and Jackson (2014), and Badev (2013).
5See Snijders (2002), Wasserman and Pattison (1996), Caimo and Friel (2011), Mele (2017) for examples.
6See also Chatterjee and Diaconis (2013) and Mele (2017) for similar results.
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network. The paper provides several contributions. First, we propose a variational mean-
field approximation for the discrete exponential family to approximates the likelihood.7 Our
approximation is computationally feasible, scalable to large networks, and it is implemented
as a standard iterative algorithm to facilitate estimation. In addition, we compute bounds
to the error of approximation for a given size of the network, extending recent results in the
literature on large deviations for random graphs (Chatterjee and Varadhan (2011), Chat-
terjee and Diaconis (2013), Lovasz (2012), Aristoff and Zhu (2014), Radin and Yin (2013)).
Specifically our approach extends the nonlinear large deviations and graph limits results of
Chatterjee and Dembo (2014) and Chatterjee and Diaconis (2013) to include covariates in
the ERGM.

Second, we prove that the mean-field approximation is asymptotically exact, i.e. the ap-
proximation error approaches zero as the network grows large.8

Third, while the general variational approximation does not have a closed form solution,
we characterize the mean-field result in two important special cases, to show how the tech-
nique is implemented. The first special case is when there is extreme homophily, i.e. the cost
of forming links across groups is very high. We show that as the network grows large, the
variational approximation for this model is equivalent to the solution of independent uni-
variate maximization problems, one for each group. The solution is the fixed point of a logit
equation, studied in Chatterjee and Diaconis (2013). The second special case, two groups of
equal size, is more complicated. We prove that the variational problem is equivalent to the
maximization of a function with two variables. We study this maximization problem using
techniques developed first by Radin and Yin (2013) and Aristoff and Zhu (2014), showing
that when the payoff from indirect links is relatively small (or negative), there is a unique
solution. The solution provides the probabilities of links within-group and across groups.
We also find a phase transition: when the difference in costs of forming links within-group
and across groups is relatively small with respect to the payoff from indirect links, then
there are two solutions: either the network is very sparse, or it is very dense. In this phase
transition identification is problematic, because the same vector of parameters may generate
two completely different network datasets.

Fourth, we show that as the number of players grows large, the networks generated by our
model concentrate around the solution of the mean-field approximation. In other words, the
networks generated according to the approximated likelihood are arbitrarily close to the net-
works generate by our model in a large economy. In the special case of extreme homophily,
the networks generated by our model will resemble a block-diagonal network, while in the
special case of two groups with equal size the networks are similar to a stochastic block
model with two groups. The general solution is more complicated to characterize and we
leave that to future research.

7Wainwright and Jordan (2008) provide a self-contained introduction to variational approximations and
mean-field methods for estimation and approximation. See also Bishop (2006), Jaakkola (2000), Grimmer
(2011).
8See Lovasz (2012), Chatterjee and Varadhan (2011) and Chatterjee and Diaconis (2013) for an overview of
the graph limits and their use in the random graph literature. In appendix we also provide an alternative
approximation based on the graph limit of the ERGM.
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We conducted simple Monte Carlo experiments in small networks, to compare our approx-
imation with the standard simulation-based Monte Carlo Maximum Likelihood estimator
(MC-MLE) (Geyer and Thompson (1992)) and the simpler Maximum Pseudo-Likelihood
estimator (MPLE) (Besag (1974)) estimators for ERGMs. Our approach provides robust
estimates, while exhibiting a small bias, which is a well known property of the mean-field
approximation. In addition, the complexity of our algorithm is quadratic in the number of
players, while the Gibbs or Metropolis-Hastings samplers used in MC-MLE can converge
in a number of steps that is exponential in the number of players squared (the number of
links). Therefore, while for some parameter values the simulation is practically infeasible,
our mean-field approximation is guaranteed to converge to a local maximum. To improve
on the approximation we restart the iterative variational algorithm several times. This step
can easily be parallelized, preserving the quadratic time convergence, while the MCMC is
intrinsically a sequential algorithm and cannot exploit the parallel architecture of modern
computers. Finally, while our model can generate dense networks, all the results hold if we
allow some sparsity. Our technique is thus applicable to empirical applications where the
network is moderately sparse.

We contribute to the literature in several ways. First, we provide a structural equilibrium
model of network formation that allows estimation using only one (large) network. Sim-
ilar models have appeared in the economics literature, e.g. DePaula et al. (2014), Sheng
(2012), Leung (2014), Miyauchi (2012), Chandrasekhar and Jackson (2014), Menzel (2016),
Currarini et al. (2009), Christakis et al. (2010), Mele (2017). We add to this literature by
showing that our network formation model extends the potential game characterization of
Mele (2017) to undirected networks and in the long run behaves like an exponential random
graph model (Wasserman and Pattison (1996), Frank and Strauss (1986), Snijders (2002)).
As a consequence, our characterization of the equilibrium networks provides a bridge be-
tween the economics/strategic and statistical/random network literatures.9

Second, we provide an example of use of variational methods of inference in the economics
literature. Approximate variational inference has been used in several disciplines to provide
alternative approximations when Monte Carlo methods are infeasible or computationally too
burdensome. For example Braun and McAuliffe (2010) provides a mean-field approximation
for standard multinomial choice models used in economics and marketing, and Grimmer
(2011) show uses variational inference for a Bayesian logit model. However, these methods
have not been widely adopted by economists, perhaps because of the bias introduced in the
estimates.10 We prove that for our structural model, the variational approximation is asymp-
totically exact, and we provide Monte Carlo evidence that the estimates are comparable to
standard simulation-based inference.

Third, we characterize the asymptotic properties of our model and the inference method,
extending results from the recent large deviations and graph limits literature. In particu-
lar, our bounds to the approximation errors extend the approach of Chatterjee and Dembo
(2014) and Chatterjee and Diaconis (2013) to include covariates in the exponential random

9See also Mele (2017), Chandrasekhar and Jackson (2014), Badev (2013) for models that incorporate both
random and strategic network features.
10A notable exception is Galichon et al. (2016) for models of discrete choice.
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graph. While similar ideas have been used to provide approximation to the normalizing
constant of the ERGM model (e.g. Amir et al. (2012) and He and Zheng (2013)), we are the
first to provide a characterization of the variational problem for a model with covariates. In
addition, we also provide a complete characterization of the variational solution for special
cases, and discuss identification of the parameters.

2. Theoretical Model

2.1. Setup and preferences. Consider a population of n heterogeneous players (the nodes),
each characterized by an exogenous type τi ∈ ⊗Sj=1Xj, i = 1, ..., n. The attribute τi is an

S-dimensional vector and the sets Xj can represent age, race, gender, income, etc. 11 We
collect all τi’s in an n × S matrix τ . The network’s adjacency matrix g has entries gij = 1
if i and j are linked; and gij = 0 otherwise. The network is undirected, i.e. gij = gji, and
gii = 0, for all i’s.12 The utility of player i is

(2.1) ui(g, τ) =
n∑
j=1

αijgij +
β

n

n∑
j=1

n∑
k=1

gijgjk,

where αij := α(τi, τj) are symmetric functions α : ⊗Sj=1Xj × ⊗Sj=1Xj → R and α(τi, τj) =
α(τj, τi) for all i, j; and β is a scalar. The utility of player i depends on the number of direct
links, each weighted according to a function α of the types τ . This payoff structure implies
that the net benefit of forming a direct connection depends on the characteristics of the two
individuals involved in the link.

Players also care about the number of links that each of their direct contacts have formed.13

For example, when β > 0, there is an incentive to form links to people that have many friends,
e.g. popular kids in school. On the other hand, when β < 0 the incentive is reversed. For
example, one can think that forming links to a person with many connections could decrease
our visibility and decrease the effectiveness of interactions. Similar utility functions have
been used extensively in the empirical network formation literature.14

Example 2.1. (Homophily) Consider a model with αij = V − c(τi, τj), where V > 0 is the
benefit of a link and c(τi, τj) (= c(τj, τi)) is the cost of the link between i and j. To model
homophily in this framework let the cost function be

(2.2) c(τi, τj) =

{
c if τi = τj,

C if τi 6= τj.

11For instance, if we consider gender and income, then S = 2, and we can take ⊗2
j=1Xj = {male,female} ×

{low, medium, high}. The sets Xj can be both discrete and continuous. For example, if we consider gender
and income, we can also take ⊗2

j=1Xj = {male,female}× [$50,000,$200,000]. Below we restrict the covariates
to be discrete, but we allow the number of types to grow with the size of the network.
12Extensions to directed networks are straightforward (see Mele (2017)).
13The normalization of β by n is necessary for the asymptotic analysis.
14See Mele (2017), Sheng (2012), DePaula et al. (2011), Chandrasekhar and Jackson (2014), Badev (2013),
Butts (2009).



APPROXIMATE VARIATIONAL ESTIMATION FOR A MODEL OF NETWORK FORMATION 6

For example, consider the parameterization 0 < c < V < C and β = 0. In this case the
players have no incentive to form links with agents of other groups. On the other hand, if
we have 0 < c < V < C and β > 0, also links across groups will be formed, as long as β is
sufficiently large.

Example 2.2. (Social Distance Model) Let the payoff from direct links be a function of the
social distance among the individuals. Formally, let α(τi, τj) := γd(τi, τj)− c, where d(τi, τj)
is a distance function, γ is a parameter that determines the sensitivity to the social distance
and c > 0 is the cost of forming a link.15 The case with γ < 0 represents a world where
individuals prefer linking to similar agents and γ > 0 represents a world where individuals
prefer linking with people at larger social distance. Note that even when γ < 0, if we have
β > 0 sufficiently large, individuals may still have an incentive to form links with people at
larger social distance.

2.2. Meetings and equilibrium. The network formation process follows a stochastic best-
response dynamics:16 in each period t, two random players meet with probability ρij; upon
meeting they have the opportunity to form a link (or delete it, if already in place). Players
are myopic: when they form a new link, they do not consider how the new link will affect
the incentives of the other player in the future evolution of the network.

ASSUMPTION 2.1. The meeting process is a function of types and the network. Let g−ij
indicate the network g without considering the link gij. Then the probability that i and j
meet is

(2.3) ρij := ρ(τi, τj, g−ij) > 0

for all pairs i and j, and i.i.d. over time.

Assumption 2.1 implies that the meeting process can depend on covariates and the state of
the network. For example, if two players have many friends in common they may meet with
high probability; or people that share some demographics may meet more often. Crucially,
every pair of players has a strictly positive probability of meeting. This guarantees that each
link of the network has the opportunity of being revised.

Upon meetings, players decide whether to form or delete a link by maximizing the sum of
their current utilities, i.e. the total surplus generated by the relationship. We are implicitly
assuming that individuals can transfer utilities. When deciding whether to form a new link
or deleting an existing link, players receive a random matching shock εij that shifts their
preferences.

At time t, the links gij is formed if

ui(gij = 1, g−ij, τ)+uj(gij = 1, g−ij, τ)+εij(1) ≥ ui(gij = 0, g−ij, τ)+uj(gij = 0, g−ij, τ)+εij(0) .

We make the following assumptions on the matching value.

ASSUMPTION 2.2. Individuals receive a logistic shock before they decide whether to form
a link (i.i.d. over time and players).

15See Iijima and Kamada (2014) for a more general example of such model.
16See Blume (1993), Mele (2017), Badev (2013).
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The logistic assumption is standard in many discrete choice models in economics and sta-
tistics (Train (2009)).

We can now characterize the equilibria of the model, following Mele (2017) and Chan-
drasekhar and Jackson (2014). In particular, we can show that the network formation is a
potential game (Monderer and Shapley (1996)).

PROPOSITION 2.1. The network formation is a potential game, and there exists a po-
tential function Qn(g;α, β) that characterizes the incentives of all the players in any state of
the network

(2.4) Qn(g;α, β) =
n∑
i=1

n∑
j=1

αijgij +
β

2n

n∑
i=1

n∑
j=1

n∑
k=1

gijgjk.

Proof. The proposition follows the same lines as Proposition 1 in Mele (2017) and it is
omitted for brevity. �

The potential function Qn(g;α, β) is such that, for any gij

Qn(g;α, β)−Qn(g − ij;α, β) = ui(g) + uj(g)− [ui(g − ij) + uj(g − ij)] .

Thus we can keep track of all players’ incentives using the scalar Qn(g;α, β). It is easy
to show that all the pairwise stable (with transfers) networks are the local maxima of the
potential function.17 The sequential network formation follows a Glauber dynamics, therefore
converging to a unique stationary distribution.

THEOREM 2.1. In the long run, the model converges to the stationary distribution πn,
defined as

(2.5) πn(g;α, β) =
exp [Qn(g;α, β)]∑
ω∈G exp [Qn(ω;α, β)]

= exp
{
n2 [Tn(g;α, β)− ψn(α, β)]

}
,

where Tn(g;α, β) = n−2Qn(g;α, β),

(2.6) ψn(α, β) =
1

n2
log
∑
ω∈G

exp
[
n2Tn(ω;α, β)

]
,

and G := {ω = (ωij)1≤i,j≤n : ωij = ωji ∈ {0, 1}, ωii = 0, 1 ≤ i, j ≤ n}.

Proof. The proof is an extension of Theorem 1 in Mele (2017). See also Chandrasekhar and
Jackson (2014) and Butts (2009). �

Notice that the likelihood (2.5) corresponds to an ERGM model with heterogeneous nodes
and two-stars. As a consequence our model inherits all the estimation and identification chal-
lenges of the ERGM model.

17A network g is pairwise stable with transfers if: (1) gij = 1⇒ ui(g, τ)+uj(g, τ) ≥ ui(g−ij, τ)+uj(g−ij, τ)
and (2) gij = 0 ⇒ ui(g, τ) + uj(g, τ) ≥ ui(g + ij, τ) + uj(g + ij, τ); where g + ij represents network g with
the addition of link gij and network g − ij represents network g without link gij . See Jackson (2008) for
more details.
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2.3. Extensions and discussion. The preferences include only direct links and friends’
populatity. However, we can also include other types of link externalities. For example, in
many applications the researcher is interested in estimating preferences for common neigh-
bors. This is an important network statistics to measure transitity and clustering in networks.
In our model we can easily add an utility component to capture these effects.

(2.7) ui(g, τ) =
n∑
j=1

αijgij +
β

n

n∑
j=1

n∑
k=1

gijgjk +
γ

n

n∑
j=1

n∑
k=1

gijgjkgki,

These preferences include an additional parameter γ that measures the effect of common
neighbors. The potential function for this model is

(2.8) Qn(g;α, β) =
n∑
i=1

n∑
j=1

αijgij +
β

2n

n∑
i=1

n∑
j=1

n∑
k=1

gijgjk +
γ

6n

n∑
j=1

n∑
k=1

gijgjkgki.

In general, all the results that we show below extend to more general utility functions that
include payoffs for link externalities similar to (2.7).

The probability that i and j meet can depend on their networks: it could be a function
of their common neighbors, or a function of their degrees and centralities, for example. In
Assumption 2.1, we assume that the existence of a link between i and j does not affect their
probability of meeting. This is because we prove the existence and functional form of the
stationary distribution (2.5) using the detailed balance condition, which is not satisfied if we
allow the meeting probabilities to depend on the link between i and j.

The model can easily be extended to directed networks and the results on equilibria and
long-run stationary distribution will hold. The results about the approximations of the
likelihood shown below will also hold for directed networks, with minimal modifications of
the proofs.

Finally, while our model generates dense graphs, the approximations using variational
methods and nonlinear large deviations that we develop in the rest of the paper also work
in moderately sparse graphs. More precisely, the utility of player i is given by

(2.9) ui(g, τ) =
n∑
j=1

α
(n)
ij gij +

β(n)

n

n∑
j=1

n∑
k=1

gijgjk,

where |α(n)
ij | and |β(n)| can have moderate growth in n instead of being bounded. We will

give more details later in our paper. 18

3. Variational Approximations

The constant ψn(α, β) in (2.6) is intractable because it involves a sum over all 2(n2) possible
networks with n players. To be concrete, if the network has n = 10 nodes, the computation
of ψn(α, β) involves the computation of 245 potential functions, which is clearly an infeasible
strategy.19

18See Chatterjee and Dembo (2014) for additional applications of nonlinear large deviations.
19See Geyer and Thompson (1992), Murray et al. (2006), Snijders (2002) for examples.
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The usual strategy in the literature consists of approximating the constant using an MCMC
algorithm (Snijders (2002)). At each iteration of the sampler, a random link gij is selected
and it is proposed to swap its value to 1−gij; the swap is accepted according to a Metropolis-
Hastings ratio. However, recent work by Bhamidi et al. (2011) has shown that such a local
sampler may have exponentially slow convergence for many non-trivial parameter vectors.20

We propose alternative methods that do not rely on simulations. Our first method consists
of finding an approximate likelihood qn(g) that minimizes the Kullback-Leibler divergence
KL(qn|πn) between qn and the true likelihood πn:

KL(qn|πn) =
∑
ω∈G

qn(ω) log

[
qn(ω)

πn(ω;α, β)

]
=

∑
ω∈G

qn(ω) log qn(ω)−
∑
ω∈G

qn(ω)n2Tn(ω;α, β) +
∑
ω∈G

qn(ω)n2ψn(α, β) ≥ 0.

With some algebra we obtain a lower-bound for the constant ψn(α, β)

ψn(α, β) ≥ Eqn [Tn(ω;α, β)] +
1

n2
H(qn) := L(qn),

where H(qn) = −
∑

ω∈G qn(ω) log qn(ω) is the entropy of distribution qn, and Eqn [Tn(ω;α, β)]
is the expected value of the re-scaled potential.

To find the best likelihood approximation we minimize KL(qn|πn) with respect to qn,
which is equivalent to finding the supremum of the lower-bound L(qn), i.e.

(3.1) ψn(α, β) = sup
qn∈Qn

L(qn) = sup
qn∈Qn

{
Eqn [Tn(ω;α, β)] +

1

n2
H(qn)

}
,

where Qn is the set of all the probability distributions on G. We have transformed the
problem of computing an intractable sum into a variational problem, i.e. a maximization
problem.

Unfortunately, in most cases the variational problem (3.1) has no closed-form solution. The
machine learning literature suggests to restrict the setQn to find a tractable approximation.21

A popular choice for the set Qn is the set of all completely factorized distribution

(3.2) qn(g) =
∏
i,j

µ
gij
ij (1− µij)1−gij ,

where µij = Eqn(gij) = Pqn(gij = 1).

This approximation is called a mean-field approximation of the discrete exponential family.
Straightforward algebra shows that the entropy of qn is additive in each link’s entropy

1

n2
H(qn) = − 1

2n2

n∑
i=1

n∑
j=1

[µij log µij + (1− µij) log(1− µij)] ,

20A sampler is defined local if it proposes to modify o(n) links per iteration.
21See Wainwright and Jordan (2008), Bishop (2006)
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and the expected potential can be computed as

Eqn [Tn (ω;α, β)] =

∑
i

∑
j αijµij

n2
+ β

∑
i

∑
j

∑
k µijµjk

2n3
.

The mean-field approximation leads to a lower bound of ψn(α, β), because we have restricted
the set of probability distributions of the maximization. The variational problem involves
finding a matrix µ(α, β)

ψn(α, β) ≥ ψMF
n (µ(α, β))

= sup
µ∈[0,1]n2

{∑
i

∑
j αijµij

n2
+ β

∑
i

∑
j

∑
k µijµjk

2n3

− 1

2n2

n∑
i=1

n∑
j=1

[µij log µij + (1− µij) log(1− µij)]
}
.(3.3)

The mean-field problem is in general nonconvex and the maximization can be performed
using any global optimization method, e.g. simulated annealing or Nelder-Mead.22

4. Asymptotic Results, Large Deviations and Graph Limits

In this section we consider the model as n → ∞. We use and extend results from the
graph limits literature,23 large deviations literature for random graphs24 and analysis of the
resulting variational problem.25 Let h be a simple symmetric function h : [0, 1]2 → [0, 1], and
h(x, y) = h(y, x). This function is called a graphon and it is a representation of an infinite
network.

We also need a representation of the vector α in the infinite network. The following
assumption guarantee that we can switch from the discrete to the continuum.

ASSUMPTION 4.1. Assume that

(4.1) αij = α (i/n, j/n) ,

where α(x, y) : [0, 1]2 → R, are deterministic exogenous functions that are symmetric, i.e.,
α(x, y) = α(y, x). 26

Since we have n players, the number of types for the players must be finite, although it

may grow as n grows. αij are symmetric, and can take at most n(n+1)
2

values. As n → ∞,
the number of types can become infinite and α(x, y) may take infinitely many values. On
the other hand, in terms of practical applications, finitely many values often suffice 27.

22See Wainwright and Jordan (2008) and Bishop (2006) for more details.
23See Lovasz (2012), Borgs et al. (2008)
24See Chatterjee and Varadhan (2011), Chatterjee and Diaconis (2013)
25See Aristoff and Zhu (2014), Radin and Yin (2013) among others.
26To ease the notations, we project ⊗S

j=1Xj onto [0, 1] and the function α(τi, τj) defined previously is now

re-defined from [0, 1]2 to R.
27If an entry of the vector τi is continuous, we can always transform the variable in a discrete vector using
thresholds. For example, if Xj = [$50,000,$200,000], we can bucket the incomes into three levels, low:
[$50,000,$100,000), medium [$100,000,$150,000) and high: [$150,000, $200,000].
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Figure 4.1. Examples of function α(x, y).
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The figure provides several examples of possible partitions of the net benefit function
α(x, y) with finite covariates. The asymptotic version of this function is defined over the
unit square.

We assume that α(x, y) is unifomly bounded in x and y.

ASSUMPTION 4.2. Assume that

(4.2) sup
(x,y)∈[0,1]2

|α(x, y)| <∞.

As a simple example, let us consider gender: the population consists of males and female
agents. For example, half of the nodes (population) are males, say i = 1, 2, . . . , n

2
and the

other half are females, i = n
2

+ 1, n
2

+ 2, . . . , n.28 That means, α(x, y) takes three values

28Here, we assume without loss of generality that n is an even number.
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according to the three regions: {
(x, y) : 0 < x, y < 1

2

}
,(4.3) {

(x, y) : 1
2
< x, y < 1

}
,(4.4) {

(x, y) : 0 < x < 1
2
< y < 1

}⋃{
(x, y) : 0 < y < 1

2
< x < 1

}
,(4.5)

and these three regions correspond precisely to pairs: male-male, female-female, and male-
female. This example is represented in Figure 4.1(C).

The work of Chatterjee and Diaconis (2013) show that the variational problem in (3.1)
translates into an analogous variational problem for the graph limit.29 For our model we can
show that the variational problem for the graphon is

ψ(α, β) = sup
h∈W

{ˆ 1

0

ˆ 1

0

α(x, y)h(x, y)dxdy +
β

2

ˆ 1

0

ˆ 1

0

ˆ 1

0

h(x, y)h(y, z)dxdydz(4.6)

− 1

2

ˆ 1

0

ˆ 1

0

I(h(x, y))dxdy

}
,

where W := {h : [0, 1]2 → [0, 1], h(x, y) = h(y, x), 0 ≤ x, y ≤ 1}, and we define the entropy
function:

(4.7) I(x) := x log x+ (1− x) log(1− x), 0 ≤ x ≤ 1,

with I(0) = I(1) = 0.
In essence the first line in (4.6) corresponds to the expected potential function in the

continuum, while the second line in (4.6) corresponds to the entropy of the graphon h(x, y).

4.1. Convergence of the variational mean-field approximation. For finite n, the vari-
ational mean-field approximation contains an error of approximation. In the next theorem,we
provide a lower and upper bound to the error of approximation for our model.

THEOREM 4.1. Under Assumption 4.2 and for fixed network size n, the approximation
error of the variational mean-field problem is bounded as

(4.8) C3(β)n−1 ≤ ψn(α, β)− ψMF
n (µ(α, β)) ≤ C1(α, β)n−1/5(log n)1/5 + C2(α, β)n−1/2,

where C1(α, β), C2(α, β) are constants depending only on α and β and C3(β) is a constant
depending only on β:

C1(α, β) := c1 · (‖α‖∞ + |β|4 + 1),

C2(α, β) := c2 · (‖α‖∞ + |β|+ 1)1/2 · (1 + |β|2)1/2,
C3(β) := |β|,

where c1, c2 > 0 are some universal constants.

Proof. See Appendix. �

29See also Mele (2017) for similar results in a directed network.
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The constants in Theorem 4.1 are functions of the parameters α and β. The upper bound
depends on the maximum payoff from direct links and the intensity of payoff from indirect
connections. The lower bound only depends on the strength of indirect connections payoffs.
One consequence is that our result holds when the network is dense, but also when it is
moderately sparse, as explained in the next remark.

Remark 4.1. It follows from the estimates in Theorem 4.1 that we can allow moderate
sparsity in our model, in the sense that |αij| and |β| can have moderate growth in n instead
of being bounded, and the difference of ψn and ψMF

n goes to zero if C1(α, β) grows slower than
n1/5/(log n)1/5 and C2(α, β) grows slower than n1/2 as n → ∞. For example, if |‖α‖|∞ =
O(nδ1), |β| = O(nδ2), where δ1 <

1
5

and δ2 <
1
20

, then ψn−ψMF
n goes to zero as n→∞. On

the other hand, if the graph is too sparse, e.g. |β| = Ω(n), then ψn cannot be approximated
by ψMF

n .

We are interested in estimating the model in large networks. The result in Theorem 4.1
shows that the solution to the variational mean-field problem becomes exact as n→∞.

In addition, Chatterjee and Diaconis (2013) show that as n→∞ the log-constant of the
ERGM converges to the solution of the variational problem (4.6), that is

(4.9) ψn(α, β)→ ψ(α, β).

The following proposition shows that for a model with finitely many types the variational
approximation is asymptotically exact.

PROPOSITION 4.1. Under Assumptions 4.1 and 4.2, the mean-field approximation be-
comes exact as n→∞

(4.10) ψMF
n (µ(α, β))→ ψ(α, β).

Proof. It follows directly from Theorem 4.1 and (4.9). �

The proposition states that as n becomes large, we can approximate the exponential ran-
dom graph using a model with independent links (conditional on finitely many types). This
is a very useful result because the latter approximation is simple and tractable, while the
exponential random graph model contains complex dependence patterns that make estima-
tion computationally expensive.

4.2. Approximation of the graph limit. We can also exploit the graph limit result and
provide an approximation of the log-constant. The variational formula for ψ(α, β) is an
infinite-dimensional problem which is intractable in most cases. Nevertheless, we can always
bound the infinite dimensional problem with finite dimensional ones (both lower and upper
bounds). For details, see Proposition A.1 in the Appendix.

The lower-bound in Proposition A.1 coincides with the structured mean-field approach of
Xing et al. (2003). In a model with homogeneous players, the lower-bound corresponds to
the computational approximation of graph limits implemented in He and Zheng (2013).
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5. Special cases

The general solution of the variational problem (4.6) is complicated. However, there
are some special cases where we can characterize the solution with extreme detail. These
examples show how we can solve the variational approximation in stylized settings, and we
use them to explain how the method works in practice.

5.1. Extreme homophily. We can exploit homophily to obtain a tractable approximation.
Suppose that there are M types in the population. The cost of forming links among indi-
viduals of the same group is finite, but there is a large cost of forming links among people
of different groups (potentially infinite). We show that in this case the normalizing constant
can be approximated by solving M independent univariate maximization problems.

PROPOSITION 5.1. Let 0 = a0 < a1 < · · · < aM = 1 be a given sequence. Assume that

(5.1) α(x, y) = αmm, if am−1 < x, y < am, m = 1, 2, . . . ,M.

and α(x, y) ≤ −K otherwise is a given function. Let ψ(α, β;−K) be the variational problem
for the graphons and ψ(α, β;−∞) = limK→∞ ψ(α, β;−K). Then, we have

(5.2) ψ(α, β;−∞) =
M∑
m=1

(am − am−1)2 sup
0≤x≤1

{
αmmx+

β

2
x2 − 1

2
I(x)

}
.

Proof. See Appendix. �

The net benefit function α(x, y) assumed in the Proposition is shown in Figure 4.1(D).
Essentially this result means that with extreme homophily, we can approximate the model,
assuming perfect segregation: thus we can independently solve the variational problem of
each type. This approach is computationally very simple, since each variational problem
becomes a univariate maximization problem.

The solution of such univariate problem has been studied and characterized in previous
work by Chatterjee and Diaconis (2013), Radin and Yin (2013), Aristoff and Zhu (2014) and
Mele (2017). It can be shown that the solutions µ∗m, where m = 1, ..,M , are the fixed point
of equations

(5.3) µm =
exp [αmm + βµm]

1 + exp [αmm + βµm]
,

for each group m, and βµ∗m(1 − µ∗m) < 1. The global maximizer µ∗m is unique except on a
phase transition curve {(αmm, β) : αmm +β = 0, αmm < −1}, see e.g. Radin and Yin (2013);
Aristoff and Zhu (2014).

Chatterjee and Diaconis (2013) show that the network of each group corresponds to an
Erdős-Rényi graph with probability of a link equal to µ∗m.

5.2. Two groups of equal size. Consider a model with only two types, e.g. male and
females, each group of measure 1

2
, as in Figure 4.1(C). We assume that players have the

same preferences as in Example 2.1.There is a cost c > 0 to form a link among players of the
same group, and a cost C > c for a link among players of different type. In terms of Figure
4.1(C) we are assuming αmm = αff and αmf = αfm. In such model, the variational problem
becomes a maximization in two variables, as shown in the next proposition.
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PROPOSITION 5.2. Let us assume that α(x, y) takes two values:

(5.4) α(x, y) =

{
α1 = V − c if 0 < x, y < 1

2
or 1

2
< x, y < 1,

α2 = V − C if 0 < x < 1
2
< y < 1 or 0 < y < 1

2
< x < 1.

and let the function F (u, v) be defined as

(5.5) F (u, v) :=
α1

2
u− 1

4
I(u) +

α2

2
v − 1

4
I(v) +

β

8
(u+ v)2 .

Then, the asymptotic normalizing constant is the solution of the following maximization
problem

(5.6) ψ(α, β) = sup
0≤u,v≤1

F (u, v).

Proof. See Appendix. �

The solution for the maximization (5.6) is much simpler than solving the general vari-
ational problem because it reduces an infinite-dimensional optimization problem to a two-
dimensional one. In this special case, we are able to provide a more precise characterization
of the maxima. Indeed, the analysis of (5.6) allows us to recover the graphon for this speci-
fication of the model.

PROPOSITION 5.3. The specification of the model in Proposition 5.2 has the following
properties

(1) The solution (u∗, v∗) satisfies:

u∗ =
e2α1+β(u∗+v∗)

1 + e2α1+β(u∗+v∗)
, v∗ =

e2α2+β(u∗+v∗)

1 + e2α2+β(u∗+v∗)
.

(2) If β ≤ 2, the maximization problem (5.6) has a unique solution (u∗, v∗). In addition,

if α1+α2+β = 0, then the unique solution is given by (u∗, v∗) =
(

e2α1+β

1+e2α1+β
, e2α2+β

1+e2α2+β

)
.

(3) If α1 + α2 + β = 0 and β >
(1+eα1−α2)

2

2eα1−α2
then the maximization problem (5.6) has two

solutions (u∗, v∗) and (1− v∗, 1− u∗) with F (u∗, v∗) = F (1− v∗, 1− u∗).

Proof. See Appendix. �

The proposition shows that the model has a simple solution, given by the solution of a
system of two equations.

We also show that there exists a phase transition, when β is sufficiently large with respect
to the difference (α1 − α2) and the parameters are on the plane α1 + α2 + β = 0. In such
configuration of the parameters, there are two global maxima of F (u, v) and the same set
of parameters can generate either a very sparse or a very dense network. This points to an
identification problem as also shown in Chatterjee and Diaconis (2013) and Mele (2017).

In essence this model (for large n) converges to a stochastic block model with probability
of links within the same group equal to u∗ and probability of links across groups equal to v∗.

To illustrate the results in Proposition 5.3 we show some examples in Figures 5.1 and
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Figure 5.1. Examples of maxima characterized in Proposition 5.3 with β = 4
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(A) (α1, α2) = (−3,−1) (B) (α1, α2) = (−2.5,−1.5)
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(C) (α1, α2) = (−2,−2) (D)(α1, α2) = (−1.7,−2.3)

The figures show the level curves of F (u, v) for different vectors of parameters. In all the
pictures β = 4. The global maxima are represented as blue triangles.

5.2. In Figure 5.1 we fix β = 4 and change the values of α1 and α2. When the differ-
ence α1 − α2 is relatively large, see Figure 5.1(A), there is a unique maximizer (u∗, v∗) =
(0.1192029, 0.8807971) indicated as the blue triangle. When we decrease the distance be-
tween α1 and α2 as in Figure 5.1(B), we obtain two global maximizer of the function F (u, v):
(u∗, v∗) = (0.0088671, 0.0620063) and (1− v∗, 1− u∗) = (0.9379937, 0.9911329). Notice that
the first solution provides a very sparse network while the second global maximum is a dense
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network. This property of the model is also related to convergence problems of the sim-
ulation algorithms for ERGMs, as shown in Bhamidi et al. (2011) and Mele (2017). Not

Figure 5.2. More examples of maxima characterized in Proposition 5.3
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(A) (α1, α2, β) = (−1.4,−1.6, 3) (B) (α1, α2, β) = (−1.1,−1.4, 2.5)

The figures show the level curves of F (u, v) for different vectors of parameters. The global
maxima are represented as blue triangles.

surprisingly, when α1 = α2 we have a perfectly symmetric pair of solutions in Figure 5.1(C):
(u∗, v∗) = (0.0212494, 0.0212494) and (1−v∗, 1−u∗) = (0.9787506, 0.9787506). Figure 5.1(D)
provides an additional example with |α1| < |α2|: we show in the Appendix that what matters
for the shape of the level curves is the absolute difference |α1−α2| and not the actual values
of these parameters.

In Figure 5.2 we show how a smaller β implies that the two solutions (u∗, v∗) and (1 −
v∗, 1 − u∗) are less extreme and closer to each other. Indeed in Figure 5.2(A) we have
(u∗, v∗) = (0.0859306, 0.0592804) and (1−v∗, 1−u∗) = (0.9407196, 0.9140694) and in Figure
5.2(B) it is (u∗, v∗) = (0.1944159, 0.116957) and (1− v∗, 1− u∗) = (0.883043, 0.8055841). As
β increases, the maximizers are very close to zero and/or one.

6. A concentration result

The special cases in the previous section provide a simple characterization of the variational
problem solution. However, the general variational problem does not have a closed form
solution. Nonetheless, we can gain some additional insights by considering the behavior of
the networks generated by our model.

In particular we want to characterize the probability that the network generated by the
model belongs to the set of graphons that solve the variational problem (3.1).
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The probability measure Pn of observing the network configuration g is given by

(6.1) Pn(g) =
1

Zn
exp

{∑
i,j

αijgij +
β

2n

∑
i,j,k

gijgjk

}
,

where Zn = en
2ψn(α,β) is the normalizer.

For any ε > 0, we can define the set Aε

Aε :=

{
h ∈ W :

ˆ 1

0

ˆ 1

0

α(x, y)h(x, y)dxdy +
β

2

ˆ 1

0

ˆ 1

0

ˆ 1

0

h(x, y)h(y, z)dxdydz

(6.2)

− 1

2

ˆ 1

0

ˆ 1

0

[h(x, y) log h(x, y) + (1− h(x, y)) log(1− h(x, y))] dxdy ≤ ψ(α, β)− ε
}
.

where ψ(α, β) is the solution of variational problem (3.1). The following proposition shows
that the probability that the network g belongs to the set Aε under the probability measure
Pn is vanishingly small as n grows large.

PROPOSITION 6.1. There exists some 0 < γ < ε, so that for any sufficiently large n,

(6.3) Pn(g ∈ Aε) ≤ e−γn
2

.

Proof. See Appendix. �

In other words, the model generates networks that asymptotically converge to the solutions
of the variational problem (3.1).

In the special case of two groups of equal size analyzed in the previous section, this suggests
that our model converges to a stochastic block model in the large n limit. In the special case
of extreme homophily, our model converges to a block-diagonal model.

7. Estimation Experiments in finite networks

We have performed simple Monte Carlo experiments to study the performance of our
asymptotic approximation in finite networks. We compare the mean-field approximation
with the standard simulation-based MCMC-MLE (Geyer and Thompson (1992), Snijders
(2002)), and the Maximum Pseudo-Likelihood estimator (Besag (1974)).

We implemented our variational approximation in the R package mfergm, available in
Github.30 We follow the machine learning literature and use an iterative algorithm that is
guaranteed to converge to a local maximum of the mean-field problem.31 Indeed, taking the
first order conditions of the mean-field problem 3.3 with respect to each µij we obtain

(7.1) µij =
exp

[
2αij + β

n

∑n
k=1 (µjk + µki)

]
1 + exp

[
2αij + β

n

∑n
k=1 (µjk + µki)

] , i, j = 1, ..., n.

The algorithm starts from an initialized matrix µ(0) and iteratively applies the update (7.1)
to each entry of the matrix. After updating all entries, the objective function is re-evaluated.

30See https://github.com/meleangelo/mfergm
31See Wainwright and Jordan (2008) and Bishop (2006) for details.

https://github.com/meleangelo/mfergm
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Since the problem is concave in each µij, this iterative method is guaranteed to find a local
maximum of (3.3).

We re-initialize the algorithm several times to get a better approximation: in the Monte
Carlo exercise below we restarted the approximation 5 times.32 Notice that this step is easily
parallelizable, while the standard MCMC method for estimation of ERGMs is an intrinsically
sequential algorithm.

We test our approximation technique using artificial network data. Each network is gen-
erated using a 10 million run of the Metropolis-Hastings sampler implemented in the ergm

command in R.
We report results for networks with 50, 100 and 200 nodes. The results are summarized

by the median and several percentiles of the estimated parameters in the 1000 simulations.33

In Table 7.1 we generate data from the vector of parameters (α1, α2, β) = (−2, 1, 2). While
all three methods seem to work well, the Mean-Field approximation gives more robust esti-
mates. At the same time, as it is well known, the mean-field can be biased. The MCMC-MLE
and MPLE estimates are very similar. One possible reason is that the MCMC-MLE default
starting value for the simulations is the MPLE estimate.

Similar results are shown in Table 7.2. The true parameter vector in this table is (α1, α2, β) =
(−2, 1, 3). The mean field approximation is more robust, giving a smaller range of estimates.
However, it is clear that it is affected by some bias.34

The computational complexity of the mean-field iterative algorithm is of order n2, while it
is well known that the simulation methods used in the MCMC-MLE may have complexity of
order en

2
for some parameter vector (Bhamidi et al. (2011), Chatterjee and Diaconis (2013),

Mele (2017)).

8. Conclusions

In this paper we have developed a model of strategic network formation with heteroge-
neous players and we have shown that our model is a potential game. In each period, a pair
of players are randomly matched and they decide whether to form or delete a link. We show
that this dynamic (Markovian) model converges in the long-run to a stationary distribution
that coincides with an exponential random graph (ERGM). As a consequence it inherits all
the challenges of estimation of the ERGMs.

In particular, the likelihood of the model is proportional to a normalizing constant that is
infeasible to compute exactly. The standard estimation strategy in the ERGM literature by-
passes the evaluation of the normalizing constant, and provides an approximated likelihood
using Markov Chain Monte Carlo simulations. However, such algorithms have convergence

32This fixed number of restarts could be suboptimal. It seems reasonable to increase the number of restarts
as the network grows larger.
33In few cases the optimization routine in R did not converge: we do not include those results in the tables.
34One practical improvement with respect to the bias problem consists of increasing the number of restarts:
this would provide a better approximation at every likelihood evaluation. A more brute-force approach is
to use a grid search algorithm instead of a standard optimization routine. Finally, as shown in the Figures
above, in many cases the objective function is relatively flat, and standard gradient-based methods may be
unable to compute numerical derivatives in some cases.
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Table 7.1. Monte Carlo estimates, comparison of three methods. True pa-
rameter vector is (α1, α2, β) = (−2, 1, 2)

n = 50 MCMC-MLE MEAN-FIELD MPLE
α1 α2 β α1 α2 β α1 α2 β

median -1.960 1.005 1.569 -1.992 1.000 2.005 -1.956 0.999 1.527
5th pctile -2.496 0.697 -2.320 -2.056 0.891 1.968 -2.320 0.796 -3.458
25th pctile -2.141 0.897 0.023 -2.009 0.981 1.997 -2.108 0.912 -0.040
75th pctile -1.788 1.103 3.142 -1.965 1.020 2.024 -1.798 1.100 2.887
95th pctile -1.500 1.294 6.227 -1.900 1.066 2.101 -1.513 1.236 4.427

n = 100 MCMC-MLE MEAN-FIELD MPLE
α1 α2 β α1 α2 β α1 α2 β

median -1.985 1.001 1.892 -1.983 1.008 2.015 -1.979 0.998 1.808
0.05 -2.306 0.817 -0.208 -2.021 0.931 1.997 -2.152 0.896 0.153
0.25 -2.099 0.936 1.071 -1.997 0.998 2.004 -2.058 0.955 1.174
0.75 -1.882 1.067 2.741 -1.967 1.021 2.044 -1.909 1.049 2.417
0.95 -1.725 1.186 4.498 -1.918 1.046 2.237 -1.788 1.123 3.125

n = 200 MCMC-MLE MEAN-FIELD MPLE
α1 α2 β α1 α2 β α1 α2 β

median -1.997 1.007 1.988 -1.981 1.002 2.045 -1.981 1.001 1.815
0.05 -2.573 0.834 -2.816 -2.016 0.920 2.003 -2.131 0.945 0.061
0.25 -2.181 0.950 0.409 -1.990 0.977 2.011 -2.044 0.979 1.183
0.75 -1.839 1.062 3.732 -1.963 1.011 2.140 -1.916 1.023 2.413
0.95 -1.555 1.177 7.729 -1.920 1.026 2.583 -1.812 1.057 3.270

Results of 1000 Monte Carlo estimates using the three methods. MCMC-MLE stands for
the Monte Carlo Maximum Likelihood estimator of Geyer and Thompson (1992),
implemented in the package ergm in R, using the stochastic approximation algorithm
developed in Snijders (2002). MEAN-FIELD is our method, implemented with an iterative
algorithm. MPLE is the Maximum Pseudo-Likelihood Estimate, which assumes
independence of the conditional choice probabilities. Each network dataset is generated
with a 10 million run of the Metropolis-Hastings sampler of the ergm command in R,
sampling every 10000 iterations.

problems and may converge exponentially slow (Bhamidi et al. (2011), Chatterjee and Dia-
conis (2013),Mele (2017)).

We provide alternative approximations that rely on a variational representation of the
ERGM normalization constant. When the types of players are finite, we show that we can
approximate the variational problem with a mean-field algorithm. We compute exact bounds
for the approximation error and prove that our mean-field approximation is asymptotically
exact. Therefore, our method delivers the exact value of the log-likelihood as the number of
players grows large. We also provide additional approximations that make use of the graph
limits for our ERGM stationary model.
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Table 7.2. Monte Carlo estimates, comparison of three methods. True pa-
rameter vector is (α1, α2, β) = (−2, 1, 3)

n = 50 MCMC-MLE MEAN-FIELD MPLE
α1 α2 β α1 α2 β α1 α2 β

median -1.954 1.006 2.601 -1.941 1.031 3.032 -1.961 1.004 2.635
0.05 -2.375 0.714 0.447 -2.024 0.878 2.947 -2.238 0.829 -0.125
0.25 -2.104 0.906 1.787 -1.971 0.996 3.001 -2.090 0.921 1.647
0.75 -1.821 1.098 3.504 -1.904 1.065 3.097 -1.808 1.087 3.440
0.95 -1.553 1.253 5.324 -1.803 1.132 3.381 -1.577 1.219 4.351

n = 100 MCMC-MLE MEAN-FIELD MPLE
α1 α2 β α1 α2 β α1 α2 β

median -2.022 0.987 3.116 -1.849 1.081 3.387 -1.997 1.001 2.980
0.05 -2.499 0.681 1.578 -2.388 0.887 3.012 -2.100 0.920 2.537
0.25 -2.156 0.904 2.644 -1.896 0.998 3.113 -2.040 0.966 2.817
0.75 -1.911 1.072 3.786 -1.785 1.129 3.699 -1.958 1.038 3.144
0.95 -1.649 1.251 5.667 -1.676 2.159 4.143 -1.891 1.094 3.358

n = 200 MCMC-MLE MEAN-FIELD MPLE
α1 α2 β α1 α2 β α1 α2 β

median -2.018 1.000 3.090 -1.883 0.967 3.493 -1.988 1.000 2.916
0.05 -2.902 0.760 -2.010 -2.009 0.819 3.022 -2.092 0.955 1.994
0.25 -2.279 0.925 1.591 -1.925 0.912 3.185 -2.030 0.982 2.585
0.75 -1.784 1.069 4.852 -1.839 1.024 3.933 -1.941 1.017 3.239
0.95 -1.281 1.237 9.355 -1.760 1.078 4.278 -1.859 1.045 3.609

Results of 1000 Monte Carlo estimates using the three methods. MCMC-MLE stands for
the Monte Carlo Maximum Likelihood estimator of Geyer and Thompson (1992),
implemented in the package ergm in R, using the stochastic approximation algorithm
developed in Snijders (2002). MEAN-FIELD is our method, implemented with an iterative
algorithm. MPLE is the Maximum Pseudo-Likelihood Estimate, which assumes
independence of the conditional choice probabilities. Each network dataset is generated
with a 10 million run of the Metropolis-Hastings sampler of the ergm command in R,
sampling every 10000 iterations.

We characterize the mean-field approximation for several special cases. First, when there
is extreme homophily, i.e. if the cost of linking across groups is extremely high, then we
show that we can approximate the normalizing constant of the ERGM with the sum of
independent maximization problems solutions, one for each type. Second, if we have only
two groups of equal size, we show that the model exhibits a phase transition. If the net
benefits of linking between groups and across groups are not too different, then the model
may generate either very sparse networks or very dense networks.

Finally we show that the networks generated by our model concentrate around the solution
of the mean-field approximation. This means that in the special cases of extreme homophily
and two types of equal size, our model converges to a stochastic block model. We are not
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able to provide a complete characterization of the general case.
We perform a simple Monte Carlo exercise to compare our approximation and the stan-

dard estimation methods for ERGMs in finite networks. We show that our method provides
reliable estimates and it is more robust than the other methods, while exhibiting some bias.
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APPENDIX: Proofs

Remark A.1. In general, the variational problem for the graphons does not yield a closed
form solution. In the special case β = 0,

(A.1) ψ(α, 0) = sup
h∈W

{¨
[0,1]2

α(x, y)h(x, y)dxdy − 1

2

¨
[0,1]2

I(h(x, y))dxdy

}
,

where I(x) := x log x+(1−x) log(1−x) and it is easy to see that the optimal graphon h(x, y)
is given by

(A.2) h(x, y) =
e2α(x,y)

e2α(x,y) + 1
,

and therefore,

(A.3) ψ(α, 0) =
1

2

¨
[0,1]2

log(1 + e2α(x,y))dxdy.

A.1. Proof of Theorem 4.1. In this proof we will try to follow closely the notation in
Chatterjee and Dembo (2014). Suppose that f : [0, 1]N → R is twice continuously differen-
tiable in (0, 1)N , so that f and all its first and second order derivatives extend continuously
to the boundary. Let ‖f‖ denote the supremum norm of f : [0, 1]N → R. For each i and j,
denote

(A.4) fi :=
∂f

∂xi
, fij :=

∂2f

∂xi∂xj
,

and let

(A.5) a := ‖f‖, bi := ‖fi‖, cij := ‖fij‖.
Given ε > 0, D(ε) is the finite subset of RN so that for any x ∈ {0, 1}N , there exists
d = (d1, . . . , dN) ∈ D(ε) such that

(A.6)
N∑
i=1

(fi(x)− di)2 ≤ Nε2.

Let us define

(A.7) F := log
∑

x∈{0,1}N
ef(x),

and for any x = (x1, . . . , xN) ∈ [0, 1]N ,

(A.8) I(x) :=
N∑
i=1

[xi log xi + (1− xi) log(1− xi)].

In the proof we extend Theorem 1.5 in Chatterjee and Dembo (2014) that we reproduce
in Theorem A.1 to help the reader:
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THEOREM A.1 (Chatterjee and Dembo (2014)). For any ε > 0,

(A.9) sup
x∈[0,1]N

{f(x)− I(x)} − 1

2

N∑
i=1

cii ≤ F ≤ sup
x∈[0,1]N

{f(x)− I(x)}+ E1 + E2,

where

(A.10) E1 :=
1

4

(
N

N∑
i=1

b2i

)1/2

ε+ 3Nε+ log |D(ε)|,

and

E2 := 4
(∑N

i=1(acii + b2i ) + 1
4

∑N
i,j=1(ac

2
ij + bibjcij + 4bicij)

)1/2
(A.11)

+1
4

(∑N
i=1 b

2
i

)1/2 (∑N
i=1 c

2
ii

)1/2
+ 3

∑N
i=1 cii + log 2.

We will use the Theorem A.1 to derive the lower and upper bound of the mean-field
approximation problem. Notice that in our case the N of the theorem is the number of
links, i.e. N =

(
n
2

)
. Let

(A.12) Zn :=
∑

xij∈{0,1},xij=xji,1≤i<j≤n

e
∑

1≤i,j≤n αijxij+
β
2n

∑
1≤i,j,k≤n xijxjk ,

be the normalizing factor and also define

Ln := sup
xij∈[0,1],xij=xji,1≤i<j≤n

{
1

n2

∑
i,j

αijxij +
β

2n3

∑
i,j,k

xijxjk(A.13)

− 1

n2

∑
1≤i<j≤n

[xij log xij + (1− xij) log(1− xij)]
}
.

Notice that n−2Zn = ψn and Ln = ψMF
n .

For our model, the function f : [0, 1](
n
2) → R is defined as

(A.14) f(x) =
n∑
i=1

n∑
j=1

αijxij +
β

2n

n∑
i=1

n∑
j=1

n∑
k=1

xijxjk.

Then, we can compute that, for sufficiently large n,

a = ‖f‖ ≤
n∑
i=1

n∑
j=1

|αij|+
n∑
i=1

n∑
k=1

1

2
|β|(A.15)

≤ n2

[ˆ
[0,1]2
|α(x, y)|dxdy +

1

2
|β|+ 1

]
.



APPROXIMATE VARIATIONAL ESTIMATION FOR A MODEL OF NETWORK FORMATION 27

Let k ∈ N, and H be a finite simple graph on the vertex set [k] := {1, . . . , k}. Let E be

the set of edges of H and |E| be its cardinality. For a function T : [0, 1](
n
2) → R

(A.16) T (x) :=
1

nk−2

∑
q∈[n]k

∏
{`,`′}∈E

xq`q`′ ,

Chatterjee and Dembo (2014) (Lemma 5.1.) showed that, for any i < j, i′ < j′,

(A.17)

∥∥∥∥ ∂T∂xij
∥∥∥∥ ≤ 2|E|,

and

(A.18)

∥∥∥∥ ∂2T

∂xij∂xi′j′

∥∥∥∥ ≤
{

4|E|(|E| − 1)n−1 if |{i, j, i′, j′}| = 2 or 3,

4|E|(|E| − 1)n−2 if |{i, j, i′, j′}| = 4.

Therefore, by (A.17), we can compute that

(A.19) b(ij) =

∥∥∥∥ ∂f∂xij
∥∥∥∥ ≤ 2 sup

0≤x,y≤1
|α(x, y)|+ 2|β|.

By (A.18), we can also compute that

c(i,j)(i′j′) =

∥∥∥∥ ∂2f

∂xij∂xi′j′

∥∥∥∥(A.20)

≤

{
4|β|n−1 if |{i, j, i′, j′}| = 2 or 3,

4|β|n−2 if |{i, j, i′, j′}| = 4.

Next, we compute that

∂f

∂xij
= 2αij +

∂

∂xij

β

2n

n∑
i=1

n∑
j=1

n∑
k=1

xijxjk.(A.21)

Let T be defined as

(A.22) T (x) =
1

n

n∑
i=1

n∑
j=1

n∑
k=1

xijxjk.

Then, we have

(A.23)
∂f

∂xij
= 2αij +

β

2

∂T

∂xij
.

Chatterjee and Dembo (2014) (Lemma 5.2.) showed that for the T defined above, there
exists a set D̃(ε) satisfying the criterion (A.6) (with f = T ) so that

(A.24) |D̃(ε)| ≤ exp

{
C̃12

434n

ε4
log

C̃22
434

ε4

}
= exp

{
C1n

ε4
log

C2

ε4

}
,
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where Ci = 2434C̃i, i = 1, 2, are universal constants. Let us define

(A.25) D(ε) :=

{
2αij +

β

2
d : d ∈ D̃(2ε/β), 1 ≤ i ≤ j ≤ n

}
.

Hence, D(ε) satisfies the criterion (A.6) and

(A.26) |D(ε)| ≤ 1

2
n(n+ 1)|D̃(2ε/β)| ≤ 1

2
n(n+ 1) exp

{
C1β

4n

24ε4
log

C2β
4

24ε4

}
.

Therefore,

E1 =
1

4

((
n

2

) ∑
1≤i<j≤n

b2(ij)

)1/2

ε+ 3

(
n

2

)
ε+ log |D(ε)|(A.27)

≤
[

1

4
(2‖α‖∞ + 2|β|) + 3

](
n

2

)
ε+ log

(
1

2
n(n+ 1)

)
+
C1β

4n

24ε4
log

C2β
4

24ε4

≤ C1(α, β)n2ε+
C1(α, β)n

ε4
log

C1(α, β)

ε4

= C1(α, β)n9/5(log n)1/5,

by choosing ε = ( logn
n

)1/5, where C1(α, β) is a constant depending only on α, β:

(A.28) C1(α, β) := c1(‖α‖∞ + |β|4 + 1),

where c1 > 0 is some universal constant 35.

35It follows from (A.27) that we can choose C1(α, β) such that C1(α, β) ≥ max{c̃1‖α‖∞ + c̃2|β|+ c̃3, c̃4β
4},

where c̃1, c̃2, c̃3, c̃4 > 0 are some universal constants. Note that max{c̃1‖α‖∞ + c̃2|β|+ c̃3, c̃4β
4} ≤ c̃1‖α‖∞ +

c̃2|β|+ c̃3 + c̃4β
4 ≤ c1(‖α‖∞ + |β|4 + 1) for some universal constant c1 > 0. Thus, we can take C1(α, β) :=

c1(‖α‖∞ + |β|4 + 1).
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We can also compute that

E2 = 4

( ∑
1≤i<j≤n

(ac(ij)(ij) + b2(ij))

(A.29)

+
1

4

∑
1≤i<j≤n,1≤i′<j′≤n

(
ac2(ij)(i′j′) + b(ij)b(i′j′)c(ij)(i′j′) + 4b(ij)c(ij)(i′j′)

))1/2

+
1

4

( ∑
1≤i<j≤n

b2(ij)

)1/2( ∑
1≤i<j≤n

c2(ij)(ij)

)1/2

+ 3
∑

1≤i<j≤n

c(ij)(ij) + log 2

≤ 4

{(
n

2

)(
n

(
‖α‖∞ +

1

2
|β|+ 1

)
4|β|+ (2‖α‖∞ + 2|β|)2

)
+

1

4
n2

[
‖α‖∞ +

1

2
|β|+ 1

][(
n

2

)(
n− 2

2

)
42|β|2n−4 +

((
n

2

)2

−
(
n

2

)(
n− 2

2

))
42|β|2n−2

]

+ (2‖α‖∞ + 2|β|)
(
‖α‖∞

2
+

1

2
|β|+ 1

)
·

[(
n

2

)(
n− 2

2

)
4|β|n−2 +

((
n

2

)2

−
(
n

2

)(
n− 2

2

))
4|β|n−1

]}1/2

+
1

4

(
n

2

)
(2‖α‖∞ + 2|β|)4|β|n−1 + 3

(
n

2

)
4|β|n−1 + log 2

≤ C2(α, β)n3/2,

where we used the formulas for a, b(ij), and c(ij)(i′j′) that we derived earlier and the combi-
natorics identities: ∑

1≤i<j≤n,1≤i′<j′≤n,|{i,j,i′,j′}|=4

1 =
∑

1≤i<j≤n

∑
1≤i′<j′≤n,|{i,j,i′,j′}|=4

1 =

(
n

2

)(
n− 2

2

)
,

∑
1≤i<j≤n,1≤i′<j′≤n,|{i,j,i′,j′}|=2 or 3

1 =

(
n

2

)2

−
(
n

2

)(
n− 2

2

)
,

and C2(α, β) is a constant depending only on α, β that can be chosen as:

(A.30) C2(α, β) := c2 (‖α‖∞ + |β|+ 1)1/2 (1 + |β|2)1/2,

where c2 > 0 is some universal constant.
Finally, to get lower bound, notice that

(A.31)
1

2

∑
1≤i<j≤n

c(ij)(ij) =
1

2

(
n

2

)
4|β|n−1 ≤ C3(β)n,

where C3(β) is a constant depending only on β and we can simply take C3(β) = |β|.
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A.2. Statement and Proof of Proposition A.1.

PROPOSITION A.1. Let 0 = a0 < a1 < · · · < aM−1 < aM = 1 be a given sequence. Let
us assume that

(A.32) α(x, y) = αml, if am−1 < x < am and al−1 < y < al, where 1 ≤ m, l ≤M.

Then, we have

sup
0≤uml≤1

uml=ulm,1≤m,l≤M

M∑
m=1

(am − am−1)
{ M∑

l=1

(al − al−1)αmluml

(A.33)

+
β

2

(
M∑
l=1

(al − al−1)uml

)2

− 1

2

M∑
l=1

(al − al−1)I(uml)

}

≤ ψ(α, β) ≤
M∑
m=1

(am − am−1) sup
0≤uml≤1
1≤l≤M

{ M∑
l=1

(al − al−1)αmluml +
β

2

(
M∑
l=1

(al − al−1)uml

)2

− 1

2

M∑
l=1

(al − al−1)I(uml)

}
.

Proof. To compute the lower and upper bounds, let us define

(A.34) uij(x) =
1

aj − aj−1

ˆ aj

aj−1

h(x, y)dy, for any ai−1 < x < ai.

We can compute that

(A.35)

¨
[0,1]2

α(x, y)h(x, y)dxdy =
M∑
i=1

M∑
j=1

(aj − aj−1)
ˆ ai

ai−1

αijuij(x)dx.

Moreover,

β

2

ˆ 1

0

ˆ 1

0

ˆ 1

0

h(x, y)h(y, z)dxdydz =
β

2

ˆ 1

0

(ˆ 1

0

h(x, y)dy

)2

dx(A.36)

=
β

2

M∑
i=1

ˆ ai

ai−1

(
M∑
j=1

(aj − aj−1)uij(x)

)2

dx.
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By Jensen’s inequality, we can also compute that

1

2

ˆ 1

0

ˆ 1

0

I(h(x, y))dxdy(A.37)

=
1

2

M∑
i=1

ˆ ai

ai−1

[
M∑
j=1

ˆ aj

aj−1

I(h(x, y))dy

]
dx

=
1

2

M∑
i=1

ˆ ai

ai−1

[
M∑
j=1

(aj − aj−1)
1

aj − aj−1

ˆ aj

aj−1

I(h(x, y))dy

]
dx

≥ 1

2

M∑
i=1

ˆ ai

ai−1

[
M∑
j=1

(aj − aj−1)I

(
1

aj − aj−1

ˆ aj

aj−1

h(x, y)dy

)]
dx

=
1

2

M∑
i=1

ˆ ai

ai−1

M∑
j=1

(aj − aj−1)I(uij(x))dx

Hence, by (A.35), (A.36), (A.37), we get

ψ(α, β) ≤
M∑
i=1

M∑
j=1

(aj − aj−1)
ˆ ai

ai−1

αijuij(x)dx+
β

2

M∑
i=1

ˆ ai

ai−1

(
M∑
j=1

(aj − aj−1)uij(x)

)2

dx

(A.38)

− 1

2

M∑
i=1

ˆ ai

ai−1

M∑
j=1

(aj − aj−1)I(uij(x))dx

≤
M∑
i=1

(ai − ai−1) sup
0≤uij≤1
1≤j≤M

{ M∑
j=1

(aj − aj−1)αijuij +
β

2

(
M∑
j=1

(aj − aj−1)uij

)2

− 1

2

M∑
j=1

(aj − aj−1)I(uij)

}
On the other hand, by restricting the supremum over the graphons h(x, y)

(A.39) h(x, y) = uij, if ai−1 < x < ai and aj−1 < y < aj, where 1 ≤ i, j ≤M,

where (uij)1≤i,j≤M is a symmetric matrix of the constants, and optimize over all the possible
values 0 ≤ uij ≤ 1, we get the lower bound:

ψ(α, β) ≥ sup
0≤uij≤1

uij=uji,1≤i,j≤M

M∑
i=1

(ai − ai−1)
{ M∑

j=1

(aj − aj−1)αijuij(A.40)

+
β

2

(
M∑
j=1

(aj − aj−1)uij

)2

− 1

2

M∑
j=1

(aj − aj−1)I(uij)

}
.

�
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A.3. Proof of Proposition 5.1. First, observe that

ψ(α, β;−∞)(A.41)

= sup
h∈W−

{ M∑
i=1

αi

¨
[ai−1,ai]2

h(x, y)dxdy +
β

2

ˆ 1

0

ˆ 1

0

h(x, y)h(y, z)dxdydz

− 1

2

M∑
i=1

¨
[ai−1,ai]2

I(h(x, y))dxdy

}

= sup
h∈W−

{ M∑
i=1

αi

¨
[ai−1,ai]2

h(x, y)dxdy +
β

2

M∑
i=1

ˆ ai

ai−1

(ˆ ai

ai−1

h(x, y)dy

)2

dx

− 1

2

M∑
i=1

¨
[ai−1,ai]2

I(h(x, y))dxdy

}

=
M∑
i=1

sup
h:[ai−1,ai]

2→[0,1]
h(x,y)=h(y,x)

{
αi

¨
[ai−1,ai]2

h(x, y)dxdy +
β

2

ˆ ai

ai−1

(ˆ ai

ai−1

h(x, y)dy

)2

dx

− 1

2

¨
[ai−1,ai]2

I(h(x, y))dxdy

}
,

where

(A.42) W− :=

{
h ∈ W : h(x, y) = 0 for any (x, y) /∈

M⋃
i=1

[ai−1, ai]
2

}
.

By taking h to be a constant on [ai−1, ai]
2, it is clear that

(A.43) ψ(α, β;−∞) ≥
M∑
i=1

(ai − ai−1)2 sup
0≤x≤1

{
αix+

β

2
x2 − 1

2
I(x)

}
.

By Jensen’s inequality

ψ(α, β;−∞) ≤
M∑
i=1

sup
h:[ai−1,ai]

2→[0,1]
h(x,y)=h(y,x)

{
αi

ˆ ai

ai−1

(ˆ ai

ai−1

h(x, y)dy

)
dx(A.44)

+
β

2

ˆ ai

ai−1

(ˆ ai

ai−1

h(x, y)dy

)2

dx

− 1

2
(ai − ai−1)

ˆ ai

ai−1

I

(
1

ai − ai−1

ˆ ai

ai−1

h(x, y)dy

)
dx

}
≤

M∑
i=1

(ai − ai−1)2 sup
0≤x≤1

{
αix+

β

2
x2 − 1

2
I(x)

}
.
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A.4. Characterization of the variational problem. The variational problem for the
graphons is

ψ(α, β) = sup
h∈W

{ˆ 1

0

ˆ 1

0

α(x, y)h(x, y)dxdy +
β

2

ˆ 1

0

ˆ 1

0

ˆ 1

0

h(x, y)h(y, z)dxdydz(A.45)

− 1

2

ˆ 1

0

ˆ 1

0

[h(x, y) log h(x, y) + (1− h(x, y)) log(1− h(x, y))] dxdy

}
.

PROPOSITION A.2. The optimal graphon h that solves the variational problem (A.45)
satisfies the Euler-Lagrange equation:

(A.46) 2α(x, y) + β

ˆ 1

0

h(x, y)dx+ β

ˆ 1

0

h(x, y)dy = log

(
h(x, y)

1− h(x, y)

)
.

Proof. The proof follows from the same argument as in Theorem 6.1. in Chatterjee and
Diaconis. �

COROLLARY 1. If α(x, y) is not a constant function, then the optimal graphon h that
solves the variational problem (A.45) is not a constant function.

Proof. If the optimal graphon h is a constant function, then (A.46) implies that α is a
constant function. Contradiction. �

In general, if a graphon satisfies the Euler-Lagrange equation, that only indicates that the
graphon is a stationary point, and it is not clear if the graphon is the local maximizer, local
minimizer or neither. In the next result, we will show that when β is negative, any graphon
satisfying the Euler-Lagrange equation in our model is indeed a local maximizer.

PROPOSITION A.3. Assume that β < 0. If h is a graphon that satisfies the Euler-
Lagrange equation (A.46), then h is a local maximizer of the variational problem (A.45).

Proof. Let us define

Λ[h] :=

ˆ 1

0

ˆ 1

0

α(x, y)h(x, y)dxdy +
β

2

ˆ 1

0

ˆ 1

0

ˆ 1

0

h(x, y)h(y, z)dxdydz(A.47)

− 1

2

ˆ 1

0

ˆ 1

0

[h(x, y) log h(x, y) + (1− h(x, y)) log(1− h(x, y))] dxdy.

Let h satisfies (A.46) and for any symmetric function g and ε > 0 sufficiently small, we can
compute that

Λ[h+ εg]− Λ[h](A.48)

= ε2

[
β

2

ˆ 1

0

(ˆ 1

0

g(x, y)dy

)2

dx− 1

4

ˆ 1

0

ˆ 1

0

I ′′(h(x, y))g2(x, y)dxdy

]
+O(ε3)

= ε2

[
β

2

ˆ 1

0

(ˆ 1

0

g(x, y)dy

)2

dx− 1

4

ˆ 1

0

ˆ 1

0

g2(x, y)

h(x, y)(1− h(x, y))
dxdy

]
+O(ε3),

and since β < 0, we conclude that h is a local maximizer in (A.45). �
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A.5. Proof of Proposition 5.2. For the convenience of the notations, let us define

u(x) := 2

ˆ 1
2

0

h(x, y)dy, 0 < x <
1

2
,(A.49)

w(x) := 2

ˆ 1

1
2

h(x, y)dy,
1

2
< x < 1,(A.50)

v1(x) := 2

ˆ 1
2

0

h(x, y)dy,
1

2
< x < 1,(A.51)

v2(x) := 2

ˆ 1

1
2

h(x, y)dy, 0 < x <
1

2
.(A.52)

We can compute that

¨
[0,1]2

α(x, y)h(x, y)dxdy =
α1

2

ˆ 1
2

0

u(x)dx+
α1

2

ˆ 1

1
2

w(x)dx(A.53)

+
α2

2

ˆ 1

1
2

v1(x)dx+
α2

2

ˆ 1
2

0

v2(x)dx.

Moreover,

β

2

ˆ 1

0

ˆ 1

0

ˆ 1

0

h(x, y)h(y, z)dxdydz(A.54)

=
β

2

ˆ 1

0

(ˆ 1

0

h(x, y)dy

)2

dx

=
β

8

ˆ 1
2

0

(u(x) + v2(x))2dx+
β

8

ˆ 1

1
2

(v1(x) + w(x))2dx.

We can also compute that by Jensen’s inequality,

1

2

ˆ 1

0

ˆ 1

0

I(h(x, y))dxdy =
1

2

ˆ 1
2

0

ˆ 1
2

0

I(h(x, y))dydx+
1

2

ˆ 1
2

0

ˆ 1

1
2

I(h(x, y))dydx(A.55)

+
1

2

ˆ 1

1
2

ˆ 1
2

0

I(h(x, y))dydx+
1

2

ˆ 1

1
2

ˆ 1

1
2

I(h(x, y))dydx

≥ 1

4

ˆ 1
2

0

I(u(x))dx+
1

4

ˆ 1
2

0

I(v2(x))dx

+
1

4

ˆ 1

1
2

I(v1(x))dx+
1

4

ˆ 1

1
2

I(w(x))dx

where I(x) := x log x+ (1− x) log(1− x).
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Therefore,

ψ(α, β) ≤ sup
u,v1,v2,w

{ˆ 1
2

0

[
α1

2
u(x)− 1

4
I(u(x))

]
dx+

ˆ 1

1
2

[
α1

2
w(x)− 1

4
I(w(x))

]
dx(A.56)

+

ˆ 1

1
2

[
α2

2
v1(x)− 1

4
I(v1(x))

]
dx+

ˆ 1
2

0

[
α2

2
v2(x)− 1

4
I(v2(x))

]
dx

+
β

8

ˆ 1
2

0

(u(x) + v2(x))2dx+
β

8

ˆ 1

1
2

(v1(x) + w(x))2dx

}
≤ 1

2
sup

0≤u,v2≤1

{
α1

2
u− 1

4
I(u) +

α2

2
v2 −

1

4
I(v2) +

β

8
(u+ v2)

2

}
+

1

2
sup

0≤w,v1≤1

{
α1

2
w − 1

4
I(w) +

α2

2
v1 −

1

4
I(v1) +

β

8
(w + v1)

2

}
= sup

0≤u,v≤1

{
α1

2
u− 1

4
I(u) +

α2

2
v − 1

4
I(v) +

β

8
(u+ v)2

}
.

On the other hand, by restricting the supremum over the graphons h(x, y) that takes the
constant values u and v, i.e.,

(A.57) h(x, y) =

{
u if 0 < x, y < 1

2
or 1

2
< x, y < 1,

v if 0 < x < 1
2
< y < 1 or 0 < y < 1

2
< x < 1,

and optimize over all the possible values 0 ≤ u, v ≤ 1, we get the lower bound:

(A.58) ψ(α, β) ≥ sup
0≤u,v≤1

{
α1

2
u− 1

4
I(u) +

α2

2
v − 1

4
I(v) +

β

8
(u+ v)2

}
.

Since the upper bound (A.56) and the lower bound (A.58) match, the proof is complete.

Remark A.2. When α1 = α2, the variational problem in equation 5.6 becomes

(A.59) ψ(α, β) = sup
0≤u,v≤1

{
α1

2
(u+ v)− 1

4
I(u)− 1

4
I(v) +

β

8
(u+ v)2

}
.

By Jensen’s inequality

ψ(α, β) ≤ sup
0≤u,v≤1

{
α1

2
(u+ v)− 1

2
I

(
u+ v

2

)
+
β

8
(u+ v)2

}
(A.60)

= sup
0≤x≤1

{
α1x−

1

2
I(x) +

β

2
x2
}
.
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On the other hand,

ψ(α, β) ≥ sup
0≤u=v≤1

{
α1

2
u− 1

4
I(u) +

α2

2
v − 1

4
I(v) +

β

8
(u+ v)2

}
(A.61)

= sup
0≤x≤1

{
α1x−

1

2
I(x) +

β

2
x2
}
.

Hence, when α1 = α2, we recover Theorem 6.4. in Chatterjee and Diaconis (2013):

(A.62) ψ(α, β) = sup
0≤x≤1

{
α1x−

1

2
I(x) +

β

2
x2
}
.

The solution to the optimization problem (A.62) has been fully characterized in e.g. Radin
and Yin (2013) and Aristoff and Zhu (2014).

A.6. Proof of Proposition 5.3. Let us consider the two-dimensional optimization prob-
lem:

(A.63) ψ(α, β) = sup
0≤u,v≤1

{
α1

2
u− 1

4
I(u) +

α2

2
v − 1

4
I(v) +

β

8
(u+ v)2

}
.

At optimality, we have

α1

2
− 1

4
I ′(u∗) +

β

4
(u∗ + v∗) = 0,

α2

2
− 1

4
I ′(v∗) +

β

4
(u∗ + v∗) = 0.

Let γ = u∗ + v∗, then, we can compute that

(A.64) u∗ =
e2α1+βγ

1 + e2α1+βγ
, v∗ =

e2α2+βγ

1 + e2α2+βγ
.

And γ satisfies the equation:

(A.65)
e2α1+βγ

1 + e2α1+βγ
+

e2α2+βγ

1 + e2α2+βγ
= γ.

Let us define:

(A.66) F (u, v) :=
α1

2
u− 1

4
I(u) +

α2

2
v − 1

4
I(v) +

β

8
(u+ v)2.

At (u∗, v∗), the Hessian matrix is given by
(A.67)

H(u∗, v∗) =

[
−1

4
I ′′(u∗) + β

4
β
4

β
4

−1
4
I ′′(v∗) + β

4

]
=

[
− 1

4u∗(1−u∗) + β
4

β
4

β
4

− 1
4v∗(1−v∗) + β

4

]
.
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It follows that when β < 0, (u∗, v∗) always gives a local maximum. To analyze the maxi-
mization problem, let us also define a function G as follows:

(A.68) G(γ) :=
e2α1+βγ

1 + e2α1+βγ
+

e2α2+βγ

1 + e2α2+βγ
− γ.

Then we must have G(−∞) =∞ and G(+∞) = −∞ which implies the existence of γ as a
function of α1, α2, and β. The function G(γ) is shown in Figures A.1 and A.2, corresponding
to the examples in Figures 5.1 and 5.2 in the main text. We can also compute that

Figure A.1. Examples of maxima characterized in Proposition 5.3 with β = 4
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(C) (α1, α2) = (−2,−2) (D)(α1, α2) = (−1.7,−2.3)

The figures show function G(γ) for different vectors of parameters, corresponding to Figure
5.1 in the main text. In all the pictures β = 4.
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(A.69) G′(γ) =
βe2α1+βγ

(1 + e2α1+βγ)2
+

βe2α2+βγ

(1 + e2α2+βγ)2
− 1.

When β < 0, G′(γ) < 0, and the γ is unique, which implies that (u∗, v∗) is unique and there
is no phase transition.

Figure A.2. More examples of maxima characterized in Proposition 5.3

0.0 0.5 1.0 1.5 2.0

−
0.

10
−

0.
05

0.
00

0.
05

0.
10

γ

G
(γ

)

0.0 0.5 1.0 1.5 2.0

−
0.

15
−

0.
10

−
0.

05
0.

00
0.

05
0.

10
0.

15

γ

G
(γ

)

(A) (α1, α2, β) = (−1.4,−1.6, 3) (B) (α1, α2, β) = (−1.1,−1.4, 2.5)

The figures show function G(γ) for different vectors of parameters, corresponding to Figure
5.2 in the main text.

Note that for β ≥ 0, since x
(1+x)2

≤ 1
4

for any x ≥ 0, we get:

(A.70) G′(γ) ≤ β

4
+
β

4
− 1 ≤ 0,

for β ≤ 2. Hence, we conclude that whenever β ≤ 2, the optimizer (u∗, v∗) is unique and
there is no phase transition.

In addition, if α1 + α2 + β = 0 then γ = 1 is a root of G(γ) = 0 and hence the unique
optimizer (u∗, v∗) is given by

(A.71) (u∗, v∗) =

(
e2α1+β

1 + e2α1+β
,

e2α2+β

1 + e2α2+β

)
.

To show this, notice that when α1 + α2 + β = 0, we have

G(γ) =
e2α1+βγ

1 + e2α1+βγ
+

e2α2+βγ

1 + e2α2+βγ
− γ

=
e2α1−α1γ−α2γ

1 + e2α1−α1γ−α2γ
+

e2α2−α1γ−α2γ

1 + e2α2−α1γ−α2γ
− γ.
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If we substitute γ = 1 we obtain

G(γ) =
eα1−α2

1 + eα1−α2
+

eα2−α1

1 + eα2−α1

eα1−α2

eα1−α2
− 1

=
eα1−α2

1 + eα1−α2
+

1

1 + eα1−α2
− 1 = 0.

Therefore γ = 1 is a root.
For the rest, we will always assume that β > 2. Phase transition occurs at (α1, α2, β)

when there exist γ1 6= γ2 with G(γ1) = G(γ2) = 0 and (u∗(γ1), v
∗(γ1)) 6= (u∗(γ2), v

∗(γ2)) and
moreover:

(A.72) F (u∗(γ1), v
∗(γ1)) = F (u∗(γ2), v

∗(γ2)).

We can gain some insights on the phase transition by first looking at the Hessian of the
maximization problem

(A.73) H(u, v) =

[
− 1

4u(1−u) + β
4

β
4

β
4

− 1
4v(1−v) + β

4

]
.

To get a local maximum at (u, v), we need

huu < 0 ,(A.74)

huuhvv − (huv)
2 > 0 .(A.75)

The condition (A.74) reads:

(A.76) − 1

4u(1− u)
+
β

4
< 0 ,

which is equivalent to:

(A.77) u(1− u) <
1

β
.

For the second condition (A.75), it is equivalent to:

(A.78)

[
− 1

4u(1− u)
+
β

4

] [
− 1

4v(1− v)
+
β

4

]
− β2

16
> 0,

which is equivalent to:

(A.79)
1

16u(1− u)v(1− v)
− β

16u(1− u)
− β

16v(1− v)
> 0.

We can re-arrange the expression and it reduces to

(A.80)
1

u(1− u)v(1− v)
> β

[
1

u(1− u)
+

1

v(1− v)

]
= β

[
v(1− v) + u(1− u)

u(1− u)v(1− v)

]
.

Hence, we conclude that the condition (A.75) is equivalent to:

(A.81) v(1− v) + u(1− u) <
1

β
.

Therefore, if the condition (A.75) holds, then the condition (A.74) is automatically satisfied.
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Let’s define the function

η(u, v) ≡ v(1− v) + u(1− u) .

The condition for positive determinant (A.75) is thus given by:

η(u, v) <
1

β
.

This is a region of the unit square: it is defined as the area outside the level curve
η(u, v) = 1/β, i.e. the set {u, v ∈ [0, 1]2 : η(u, v) < 1

β
}.

We have shown before that if α1 + α2 + β = 0 then γ = 1 is a root of G(γ) = 0. To
have two stationary points (other than γ = 1), since G(−∞) =∞, G(∞) = −∞, G(1) = 0
and G(γ) is smooth in γ, it suffices to have G′(1) > 0. We will show later with additional
arguments that, indeed when G′(1) > 0, we will have two local maxima. Note that

(A.82) G′(1) =
βeα1−α2

(1 + eα1−α2)2
+

βeα2−α1

(1 + eα2−α1)2
− 1,

and we can compute that

G′(1) =
βeα1−α2

(1 + eα1−α2)2
+

βeα2−α1

(1 + eα2−α1)2
− 1

=
βeα1−α2

(1 + eα1−α2)2
+

β

(1 + eα1−α2)(1 + eα2−α1)
− 1

=
β

(1 + eα1−α2)

[
eα1−α2

(1 + eα1−α2)
+

1

(1 + eα2−α1)

]
− 1

=
β

(1 + eα1−α2)

[
eα1−α2

(1 + eα1−α2)
+

eα1−α2

(1 + eα1−α2)

]
− 1

=
2βeα1−α2

(1 + eα1−α2)2
− 1.

Hence G′(1) > 0 if and only if

(A.83) β >
(1 + eα1−α2)2

2eα1−α2
≡ ε(α1 − α2).

Before we proceed, let us notice that (1+eα1−α2 )2

2eα1−α2
≥ 2. Thus if the above condition holds,

then we are automatically in the regime β > 2.
Now we have a condition that guarantees that there exist two stationary points γ1 and γ2,

such that

γ1 < 1 < γ2 .

Notice that the function ε(α1 − α2) has a minimum of 2, which implies that any β < 2
would have a unique maximum, which is consistent with our conclusion before.
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−2 −1 0 1 2

0
1

2
3

4

ε(α1 − α2)

α1 − α2

ε(
α
1
−
α
2)

β=3

ε(α1 − α2)

φ−φ

Let φ > 0 be the value of α1−α2 such that ε(φ) = β and ε(−φ) = β. Then, if |α1−α2| < φ
the function F has two local stationary points in addition to γ = 1.

Next, let us prove that if γ∗ < 1 is a solution, then 2− γ∗ > 1 is also a solution.
Indeed, let us notice that

(A.84) G(γ) = 0 if and only if
e2α1+βγ

1 + e2α1+βγ
+

e2α2+βγ

1 + e2α2+βγ
− γ = 0 .

Under the assumption α1 + α2 + β = 0, we have

(A.85) 2α1 + 2β = −2α2, 2α2 + 2β = −2α1,

and thus we can compute that

G(2− γ) =
e2α1+2β−βγ

1 + e2α1+2β−βγ +
e2α2+2β−βγ

1 + e2α2+2β−βγ − (2− γ)

=
e−(2α2+βγ)

1 + e−(2α2+βγ)
+

e−(2α1+βγ)

1 + e−(2α1+βγ)
− (2− γ)

=

[
1− e2α1+βγ

1 + e2α1+βγ

]
+

[
1− e2α2+βγ

1 + e2α2+βγ

]
− 2 + γ

= 1− e2α1+βγ

1 + e2α1+βγ
+ 1− e2α2+βγ

1 + e2α2+βγ
− 2 + γ

=
e2α1+βγ

1 + e2α1+βγ
+

e2α2+βγ

1 + e2α2+βγ
− γ,

which yields that G(2− γ) = 0 if and only if G(γ) = 0.
By the same reasoning and the previous algebra, it follows that if (u∗, v∗) is a stationary

point, then also (1− v∗, 1− u∗) is a stationary point. With some algebra we can show that
F (u, v) = F (1− v, 1− u). Indeed, we have
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F (1− v, 1− u) =
α1

2
(1− v)− 1

4
I(1− v) +

α2

2
(1− u)− 1

4
I(1− u) +

β

8
(1− u+ 1− v)2

=
α1

2
− α1

2
v − 1

4
I(v) +

α2

2
− α2

2
u− 1

4
I(u) +

β

8
(2− (u+ v))2

=
α1

2
− α1

2
v − 1

4
I(v) +

α2

2
− α2

2
u− 1

4
I(u) +

β

8
(4− 4(u+ v) + (u+ v)2)

=

(
α1

2
+
α2

2
+
β

2

)
− α1

2
v − 1

4
I(v)− α2

2
u− 1

4
I(u)− β

2
(u+ v) +

β

8
(u+ v)2 ,

and by using α1

2
+ α2

2
+ β

2
= 0, we have

F (1− v, 1− u) = −α1

2
v − 1

4
I(v)− α2

2
u− 1

4
I(u)− β

2
(u+ v) +

β

8
(u+ v)2

= −α1

2
v − 1

4
I(v)− α2

2
u− 1

4
I(u)− β

2
u− β

2
v +

β

8
(u+ v)2

= v

(
−α1

2
− β

2

)
+ u

(
−α2

2
− β

2

)
− 1

4
I(u)− 1

4
I(v) +

β

8
(u+ v)2

=
α2

2
v +

α1

2
u− 1

4
I(u)− 1

4
I(v) +

β

8
(u+ v)2

= F (u, v) .

Therefore it follows that when (u∗, v∗) is a maximizer, so it is (1−v∗, 1−u∗) and F (u∗, v∗) =
F (1− v∗, 1− u∗).

The condition for positive definiteness for the Hessian matrix is η(u, v) < 1
β
. Notice that

in our derivation we have assumed that β > 2 and hence β > 0, because we know that when
β ≤ 2 we have a unique maximizer (see above).

Assume α1+α2+β = 0 and β > (1+eα1−α2 )2

2eα1−α2
, then there exists some γ∗ < 1 < 2−γ∗ that give

two set of stationary points (u∗, v∗) and (1−v∗, 1−u∗) such that F (u∗, v∗) = F (1−v∗, 1−u∗).
Since we know the maximum exists, to show that we can find two maxima (u∗, v∗) and
(1 − v∗, 1 − u∗), it suffices to show that γ∗ = 1 corresponds to a saddle point. This is the
case if the Hessian matrix has both positive and negative eigenvalues, which is the case if
η(u∗(1), v∗(1)) > 1

β
, which is equivalent to:

(A.86) η(u∗(1), v∗(1)) =
2

(1 + eα1−α2)(1 + eα2−α1)
>

1

β
.

It is easy to check that

(1 + eα1−α2)(1 + eα2−α1)

2
=

(1 + eα1−α2)2

2eα1−α2
.

Thus the condition (A.86) is equivalent to the assumption β > (1+eα1−α2 )2

2eα1−α2
.

¿From the equation (A.64), it is clear that u∗(γ) is monotonic in γ and thus u∗(γ1) 6= u∗(γ2)
for any γ1 6= γ2.

Moreover, we need to show that (u∗, v∗) 6= (1 − v∗, 1 − u∗) so that we get two distinct
global maximizers. This is simple since u∗ + v∗ = γ∗ 6= 1.
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To summarize, if α1 + α2 + β = 0, and

β >
(1 + eα1−α2)2

2eα1−α2
,

then, there are two global maximizers. This completes the proof.

We can also decouple the solution to the optimization problem (5.6) so that the optimal
u and v satisfy two independent equations as follows.

Remark A.3. The optimal (u, v) in the optimization problem (5.6) satisfies:

α1

2
− 1

4
log

(
u

1− u

)
+
β

4
(u+ v) = 0,(A.87)

α2

2
− 1

4
log

(
v

1− v

)
+
β

4
(u+ v) = 0.(A.88)

Equating the equations (A.87) and (A.88), we get:

(A.89)
α1

2
− 1

4
log

(
u

1− u

)
=
α2

2
− 1

4
log

(
v

1− v

)
,

which implies that

(A.90) v =
u

u+ e2(α1−α2)(1− u)
, u =

v

v + e2(α2−α1)(1− v)
.

Substituting into (A.87) and (A.88), we conclude that the optimal (u, v) satisfies:

α1

2
− 1

4
log

(
u

1− u

)
+
β

4

[
u+

u

u+ e2(α1−α2)(1− u)

]
= 0,(A.91)

α2

2
− 1

4
log

(
v

1− v

)
+
β

4

[
v

v + e2(α2−α1)(1− v)
+ v

]
= 0.(A.92)

A.7. Proof of Proposition 6.1. The probability measure Pn is defined as follows. For
any configuration of the n-node graph X, let Xij = Xij ∈ {0, 1}, for i 6= and Xii = 0 and
Xij = 1 if there is an edge between node i and j and Xij = 0 otherwise. Then, under Pn,
the probability of observing the configuration X is given by

(A.93) Pn(X) =
1

Zn
exp

{∑
i,j

αijXij + β
∑
i,j,k

XijXjk

}
,

where Zn = en
2ψn(α,β) is the normalizer.
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We have shown that ψn(α, β)→ ψ(α, β), where

ψ(α, β) = sup
h∈W

{ˆ 1

0

ˆ 1

0

α(x, y)h(x, y)dxdy +
β

2

ˆ 1

0

ˆ 1

0

ˆ 1

0

h(x, y)h(y, z)dxdydz(A.94)

− 1

2

ˆ 1

0

ˆ 1

0

[h(x, y) log h(x, y) + (1− h(x, y)) log(1− h(x, y))] dxdy

}
.

For any ε > 0, let

Aε :=

{
h ∈ W :

ˆ 1

0

ˆ 1

0

α(x, y)h(x, y)dxdy +
β

2

ˆ 1

0

ˆ 1

0

ˆ 1

0

h(x, y)h(y, z)dxdydz

(A.95)

− 1

2

ˆ 1

0

ˆ 1

0

[h(x, y) log h(x, y) + (1− h(x, y)) log(1− h(x, y))] dxdy ≤ ψ(α, β)− ε
}
.

Note that

(A.96) Pn(X ∈ Aε) =
1

Zn

∑
X∈Aε

exp

{∑
i,j

αijXij + β
∑
i,j,k

XijXjk

}
.

We have shown that limn→∞
1
n2 logZn = ψ(α, β). By the same approach, we can show that

(A.97) lim
n→∞

1

n2
log

∑
X∈Aε

exp

{∑
i,j

αijXij + β
∑
i,j,k

XijXjk

}
= ψAε(α, β),

where

ψAε(α, β) = sup
h∈Aε

{ˆ 1

0

ˆ 1

0

α(x, y)h(x, y)dxdy +
β

2

ˆ 1

0

ˆ 1

0

ˆ 1

0

h(x, y)h(y, z)dxdydz

(A.98)

− 1

2

ˆ 1

0

ˆ 1

0

[h(x, y) log h(x, y) + (1− h(x, y)) log(1− h(x, y))] dxdy

}
.

Hence, we conclude that

(A.99) lim sup
n→∞

1

n2
logPn(X ∈ Aε) ≤ ψAε(α, β)− ψ(α, β) ≤ −ε.
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