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Professional and business networks are an im-
portant determinant of labor market outcomes
and efficiency. We study the emergence of
such networks, using anonymized data on over
30,000 users of Eight, a contact and career man-
agement app with over 3 million users in Japan.

Our empirical analysis is guided by a struc-
tural model of network formation with observed
and unobserved individual heterogeneity. In our
model, users are first randomly assigned to one
of a finite number of unobservable types. The
network is then formed sequentially, as users
randomly meet and establish business connec-
tions based on their benefits and costs of form-
ing, maintaining and deleting a link.

The Eight data offers a unique view into the
mechanisms behind the formation of face-to-
face professional networks at scale, since the ex-
change of business cards is a traditional busi-
ness practice in Japan. Eight’s users have access
to a mobile app to scan and manage the busi-
ness cards they receive, and to become contacts
within the Eight professional network. We use
these links and (some) individual covariates as
our network data.

We overcome several computational chal-
lenges that plague these structural models by
using a highly scalable two-step estimation
method. The first step makes efficient use of
the sparsity of the network and information on
observable characteristics to recover the unob-
served types, through computationally conve-
nient approximations of the likelihood function.
In the second step, a pseudolikelihood estimator
recovers the structural parameters of the utility
functions, given the estimated unobserved het-
erogeneity.
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Our results bring light into the role of ho-
mophily and shared professional contacts on the
emergence of business networks.

I. Model

We model the Eight users decision to form,
maintain and delete links. Individuals are char-
acterized by a vector of observables xi and unob-
servables zi, both with finite support. Each user
belongs to one of K types, so zi = (zi1, ...,ziK)
and user i belongs to type k if zik = 1. The net-
work is described by the (symmetric) adjacency
matrix g, with entries gi j = 1 if users i and j are
linked and gi j = 0 otherwise. The utility for user
i from network g is given by

Ui(g) =
n

∑
j=1

gi j

(
ui j + ∑

r 6=i, j
g jrgrivi jr

)

where ui j = uw
i j := αw + ∑

P
p=1 βwp1(xip=x jp) if

zi = z j and ui j = ub
i j := αb +∑

P
p=1 βbp1(xip=x jp)

if zi 6= z j; and vi jr = γ if zi = z j = zr and vi jr = 0
otherwise. In this formulation ui j is the net util-
ity of forming a direct link between i and j, in-
cluding both costs and benefits of each link; and
vi jr is the payoff that i receives because of the
common connections with j. In our specifica-
tion, we allow ui j to depend on observables and
unobservables, and vi jr is normalized to 0 when
considering users of different unobserved types.
The types zi’s are randomly assigned at time t =
0 and do not change over time. Links are formed
sequentially, and in each period t = 1,2, .. we
have the following:
1. Users i and j meet with probability ρi j > 0.
2. Users i and j observe a logistic matching
shock εi j, iid among players and time.
3. Users i and j decide whether to form or delete
the link gi j, by maximizing their joint surplus.
Mele (2022) and Dahbura et al. (2021) show
that, under mild assumptions and conditioning
on the unobserved types z, this network forma-
tion process leads to a long-run equilibrium dis-
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tribution of networks π(g,x,z;θ),

(1) π(g,x,z;θ) =
K

∏
k=1

eQkk

ckk

[
K

∏
l>k

∏
i j

e∆i j

1+ e∆i j

]

where ∆i j = zikz jlgi jub
i j,

Qkk =
n

∑
i=1

n

∑
j=1

zikz jkgi j

(
uw

i j +
2γ

3 ∑
r 6=i, j

zrkg jrgri

)

and ckk = ∑ω∈G exp(Qkk). This shows that the
likelihood of observing a network g can be de-
composed in within- and between-types likeli-
hood contributions. The between-type likeli-
hood consists of independent links, because the
externality vi jr is normalized to zero; while the
within-type likelihood consists of K indepen-
dent exponential random graphs.

II. Scalable two-step estimation

We take a random effects approach and as-
sume that zi’s are independent from observables
and the network,

(2) zi
iid∼ pη(z) = Multinomial(1;η1, ...,ηK)

Let L(g,x,z,θ ,η) := pη(z)π(g,x,z;θ), so com-
plete log-likelihood is

(3) L (g,x;θ ,η) = log ∑
z∈Z

L(g,x,z,θ ,η)

Estimation of this model is challenging for two
reasons. First, the likelihood π(g,x,z;θ) is pro-
portional to a normalizing constant that is im-
practical or infeasible to compute. Second, the
complete likelihood involves integrating over all
possible unobservable block structures z, which
is also impractical.

We therefore perform approximate inference
based on an approximation of the likelihood
(3). We exploit the fact that our model cor-
responds to a stochastic block model when
γ = 0. Indeed, most of the links are across
blocks, while the contribution to the likeli-
hood of the within-type links is small. There-
fore, we estimate the types assigments us-
ing the approximate stochastic block model
likelihood, setting γ = 0 for the community
discovery step (Babkin et al., 2020). Let
L0(g,x,z,α,β ,η) := pη(z)π(g,x,z;α,β ,γ = 0),

so we have L(g,x,z,θ ,η) ≈ L0(g,x,z,α,β ,η).
To estimate the stochastic block model, we
use a variational mean-field approximation ap-
proach (Bickel et al., 2013; Babkin et al., 2020).
This amounts to find the approximate multino-
mial distribution qξ (z) = ∏

n
i=1 qξi(zi) that mini-

mizes the Kullback-Leibler divergence from the
true likelihood; we thus obtain a lower bound
`B(g,x,α,β ,η ;ξ ) to the log-likelihood

L (g,x;θ ,η) ≈ log ∑
z∈Z

L0(g,x,z,α,β ,η)

≥ `B(g,x,α,β ,η ;ξ )

=
n

∑
i< j

K

∑
k=1

K

∑
l=1

ξikξ jl logπi j,kl(x)

+
n

∑
i=1

K

∑
k=1

ξik (logηk− logξik)

where πi j,kl(x) is the probability that i and j of
type k and l are connected. Maximizing the
lower bound `B(g,x,α,β ,η ;ξ ) is still compu-
tationally intensive for a large network, thus we
resort to a minorization approach, first proposed
in Vu, Hunter and Schweinberger (2013). At it-
eration s+1 of the algorithm, we find the ξ that
maximizes the minorizer M(ξ ,ξ (s)) of the lower
bound

M(ξ ,ξ (s)) :=
n

∑
i< j

K

∑
k=1

K

∑
l=1

ξ
2
ik

ξ
(s)
jl

2ξ
(s)
ik

+ξ
2
jl

ξ
(s)
ik

2ξ
(s)
jl

 logπ
(s)
i j;kl(x)

+
n

∑
i=1

K

∑
k=1

ξik

(
logη

(s)
k − logξ

(s)
ik −

ξik

ξ
(s)
ik

+1

)
.

The maximization of M(ξ ,ξ (s)) amounts to the
solution of n independent maximization prob-
lems, amenable to massive parallelization. The
update rules for ξ , η , and πi j;kl(x) follow

ξ
(s+1) := argmax

ξ

M
(

ξ ,ξ (s)
)
,

η
(s+1)
k :=

1
n

n

∑
i=1

ξ
(s+1)
ik ,

π
(s+1)
i j;kl (x) :=

∑
n
i=1 ∑ j 6=i ξ

(s+1)
ik ξ

(s+1)
jl 1{gi j,χi j}

∑
n
i=1 ∑ j 6=i ξ

(s+1)
ik ξ

(s+1)
jl 1{χi j}

,

for k, l = 1, . . . ,K, where χi j = {χ1,i j, ...,χP,i j}
and χp,i j = 1{xip = x jp}. Once this Variational
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EM algorithm has converged, we assign ẑ ac-
cording to the modal type of each node. Given
the estimated types ẑ, we then estimate the struc-
tural parameters θ = (α,β ,γ) using a pseudo-
likelihood estimator. Let pw

i j and pb
i j be the

conditional probabilities of links within- and
between-type, respectively

pw
i j = Λ

(
uw

i j +uw
ji +4γ ∑

r 6=i, j
Ii jrg jrgir

)
pb

i j = Λ

(
ub

i j +ub
ji

)
where Λ(u) = eu/(1+eu) is the logistic function
and Ii jr = 1 if zi = z j = zr. The pseudolikelihood
estimator solves

θ̂PL = argmax
θ

n

∑
i=1

n

∑
j>i

[
gi j log pi j

+ (1−gi j) log(1− pi j)
]

with pi j = pw
i j if zi = z j and pi j = pb

i j other-
wise. Asymptotic theory for this estimator is
contained in Boucher and Mourifie (2017).

III. Data and Results

We use anonymized data on business card ex-
changes among users of Eight who have agreed
to the terms of usage of the service. Users up-
load their own business card when creating their
profile, which allows us to observe information
about them as well as their business connections
with other users. We employ information on the
user’s geocoded location based on the address in
their business card. We map the coordinates to
an index of the H3 indexing system,1 which rep-
resents a tile of roughly 5.17 squared kilome-
ters. We also employ data on their occupation
type and industrial classification of the company
they work for. The rest of the analysis is per-
formed on a sub-network containing only users
located in Tokyo. We employ k-core decompo-
sition to extract the connected component that
exhibits a minimum degree of 10. The resulting
graph is formed by 30,323 nodes and 321,188
edges. Most users in the data are employed in
companies in the Technology (22%) and Con-
sulting (14%) industries. The most common oc-
cupational categories are Sales-related positions

1https://eng.uber.com/h3/

(17%) followed by company directors (15%).
We also observe a large degree of geographic
concentration: about 84% of the nodes are lo-
cated in just five districts of Tokyo. The net-
work is quite sparse, with a density of 0.0007.
The median degree is 16 and the maximum de-
gree is 343, reflecting the highly skewed degree
distribution of the network.

Figure 1. : The Eight Mobile App

Note: The Eight mobile app allows users to scan physical busi-
ness cards employing the smartphone’s camera. High quality
digitization is achieved through the usage of advanced OCR al-
gorithms and the help of human operators.

Our implementation of the Variational EM al-
gorithm is an improved version of the hergm
R package (Schweinberger and Luna, 2018).
The lighthergm package makes it possible
to perform the block recovery step on net-
works with hundreds of thousands of nodes with
model specifications including discrete covari-
ates. Scalability is achieved through the usage
of sparse matrices and by favoring matrix alge-
bra over nested loops, which allows us to mas-
sively parallelize most computations. The code
is publicly available on GitHub.2 Further imple-
mentation details can be found in Dahbura et al.
(2021). We estimate the model with K = 100
types. We initialize the types affiliations with
the Infomap algorithm by Rosvall, Axelsson and
Bergstrom (2009). We run 20,000 iterations of
the variational EM algorithm without employing

2https://github.com/sansan-inc/lighthergm
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Figure 2. : Results of the Block Recovery Step
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Note: The clustering step is first initialized with the resulting partition after applying 20,000 iterations of the EM algorithm without
employing covariates. The values shown are obtained by employing for clustering the information on node location (H3 Index Tile),
large industrial category and occupation type.

Table 1—: HERGM Parameter Estimates

Between Within
(1) (2)

Intercept (α) −7.709∗∗∗ −4.754∗∗∗

(0.002) (0.005)
Shared Contacts (γ) 0.736∗∗∗

(0.004)
Same Location (β1) 0.333∗∗∗ 0.006
(H3 Tile) (0.007) (0.012)
Same Industry (β2) 0.694∗∗∗ 0.034∗∗∗

(0.005) (0.009)
Same Occupation (β3) 0.409∗∗∗ 0.041∗∗∗

(0.006) (0.010)

Bayesian Inf. Crit. 4,171,768 808,597

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
Coefficient estimates are obtained by the method of Maximum Pseudo-Likelihood Estimation.

the information on node covariates to achieve a
better starting partition at a relatively low com-
putational cost. Finally, we apply 100 EM it-
erations starting from the partition obtained in
the previous step, using the version of the algo-
rithm that uses the full specification with node
covariates. This is the most complex version of
the algorithm in terms of memory consumption
and computation. For our network, one iteration

takes roughly 1.3 minutes and the whole com-
putation can be performed with under 20 GB of
memory. This is a considerable improvement
in terms of processing time and memory us-
age over previous implementations in Schwein-
berger and Luna (2018), which did not allow for
node covariates. Figure 2a shows the level of the
lower bound at each iteration when applying the
EM algorithm with covariates.
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Figure 2b shows the distribution of block size.
The distribution is skewed, with a median size
of 230 nodes and a maximum size of 1,155
nodes, although the largest block only accounts
for roughly 3.8% of the total number of nodes.
The resulting partition is an improvement over
the initial value obtained from Infomap, which
groups roughly half of the nodes in the four
largest blocks.

The parameters of the utility function are ob-
tained by Maximum Pseudo-Likelihood Esti-
mation (MPLE), conditioning on the estimated
node partition. The corresponding estimates are
shown in Table 1. We observe evidence of ho-
mophily in professional networking. Business
persons in our data exhibit a significant prefer-
ence for connections with other users who are
similar in terms of geospatial location, occupa-
tional category and industrial classification, es-
pecially for connections across the communi-
ties recovered by our model. This is consis-
tent with other studies on industrial and spatial
agglomeration (although geographic homophily
within types is not significant). We also observe
that pairs of users with contacts in common are
significantly more likely to form new connec-
tions. Finding evidence of externalities even af-
ter controlling for homophily is an important re-
sult for such a sparse network. It may suggest
that the network as a whole can benefit from
lower costs to triadic closure. This can poten-
tially be achieved through improvements on the
way users connect with each other through the
web app, and on the information they observe in
their feed.

IV. Conclusion

In this work we study the decision process be-
hind the formation of a large professional net-
work, guided by an empirical network forma-
tion model with unobserved types. We use data
of mostly face-to-face encounters from a pop-
ular professional networking service in Japan,
and make use of a Variational Expectation Max-
imization algorithms to recover unobservable
types, after controlling for node covariates. Our
implementation is scalable and can be employed
to analyze networks with hundreds of thousands
of nodes at a low computational cost. A scal-
able block recovery algorithm can be useful for
other downstream tasks such as node classifi-

cation, link prediction, and the improvement of
search engines by employing information on the
similarity of nodes on the unobserved types re-
covered by our model. Although our two-steps
method significantly enhances researchers’ abil-
ity to estimate models with large scale networks,
additional improvements are possible, especially
in the handling of a large number of covariates
as well as in model selection. We leave these
developments to future research.
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