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Abstract

The main challenges in estimating strategic network formation models are the pres-
ence of multiple equilibria, and the fact that the number of possible network config-
urations increases exponentially with the number of players. I propose a dynamic
model of strategic network formation with heterogeneous players, which converges to
a unique stationary equilibrium. Hence, the structural preference parameters can be
estimated using a single network observation. In addition, the model provides the first
equilibrium micro-foundation of exponential random graphs. Because of the curse of
dimensionality, the likelihood is computationally intractable. Therefore, I propose a
Bayesian estimation strategy that samples from the posterior, interleaving parameter
and network simulations, without evaluating the likelihood. I prove that the proposed
algorithm converges to the correct posterior distribution. A mean-field analysis shows
that the algorithm converges fast for practical applications. Estimation is tested with
artificial and Add Health data, confirming evidence of homophily in high schools.
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1 Introduction

Social networks are important determinants of individuals’ socioeconomic performance. An
increasing amount of evidence shows that the number and composition of social ties affects
employment prospects, school performance, risky behavior, adoption of new technologies,
diffusion of information and health outcomes.1 The structure of personal networks is endoge-
nous: individuals choose their peers and friends according to their socioeconomic character-
istics and their relationships. As a consequence, in socially generated networks the agents
are likely to interact with similar individuals (homophily), segregating along socioeconomic
attributes.2 This paper provides a model and estimation methods to study segregation and
homophily in social networks.

The literature on strategic models of network formation provides a framework to in-
terpret the observed network as the equilibrium of a game.3 However, the estimation and
identification of strategic models is challenging. First, network formation models usually
have multiple equilibria. Second, there is a curse of dimensionality: the number of possible
network configurations increases exponentially with the number of players. Finally, the data
available to the econometrician usually consist of a single network snapshot. It is therefore
crucial to develop a systematic framework to deal with each of these challenges.

The model presented in this work combines ingredients from the strategic and random
network formation literature.4 The random components allow me to derive a likelihood for
the observed network, while preserving the equilibrium interpretation of the strategic model.
Players have preferences over network realizations and individual characteristics. The utility
function includes payoffs from direct links, reciprocated links, friends of friends and popu-
larity. In each period, a player is randomly drawn from the population and meets another
individual, according to a random meeting technology. Upon meeting, the player has the
opportunity to revise his link. Before updating their linking strategy, the players receive
a random shock to their preferences, unobserved by the econometrician. The dynamic of
the model follows a stochastic best-response dynamics, and generates a sequence of directed
networks.

The theoretical results provide conditions under which the model admits a potential func-
tion, simplifying the analysis of the equilibria of the network formation game.5 The set of
Nash equilibria of the model corresponds to the maxima of the potential function. Under
mild restrictions on preferences, meeting technology and standard assumptions on prefer-
ences shocks, I show that the sequence of networks generated by the model is a Markov
chain, and it converges to a unique stationary equilibrium distribution. The latter provides
the likelihood of observing a specific network realization in the long-run.

1For example, see the contributions of Topa (2001); Laschever (2009); Cooley (2010); De Giorgi et al.
(2010); Nakajima (2007); Bandiera and Rasul (2006); Conley and Udry (forthcoming); Golub and Jackson
(2011); Acemoglu et al. (2011).

2See Currarini et al. (2009, 2010), De Marti and Zenou (2009),Echenique et al. (2006).
3See Jackson (2008), Jackson and Wolinsky (1996), Bala and Goyal (2000) for examples.
4See Jackson (2008) for a review of network formation models.
5See Monderer and Shapley (1996)
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Estimation of the posterior distribution for the structural preference parameters is chal-
lenging because of the curse of dimensionality: the likelihood is known up to a normalizing
constant that cannot be computed even for very small networks.6 Traditional MCMC sam-
plers like Metropolis-Hastings and Gibbs are infeasible for this model. Therefore I propose
an approximate Bayesian MCMC exchange algorithm that allows sampling from the poste-
rior distribution without evaluating the likelihood.7 The sampler interleaves parameter and
network simulations in two steps: first, a parameter is proposed with a metropolis-hastings
step; second, given the proposed parameter, another metropolis-hastings sampler simulates
the network formation model to draw a network from the stationary distribution.8

I prove that the algorithm is ergodic and converges to the correct posterior distribution.
The speed of convergence depends crucially on the convergence rate of the network simu-
lations algorithm. Extending the approach of Bhamidi et al. (2011) to directed networks
through mean-field approximations for the exponential family,9 I show that in the special
case of linear utilities the convergence properties of the model are good. The reason is that
the model incorporates dependencies for up to two directed links (two-mixed-stars): these
dependencies are well-behaved and the region of parameters corresponding to exponentially
slow mixing of the simulations is negligible. The network simulation algorithm mixes in
order n2 log n steps for most parameter vectors, guaranteeing good mixing properties for the
parameter simulations. Furthermore, I show that extensions of the model that incorporate
additional dependencies with more than two links, may have convergence problems. Sim-
ulations confirm that the algorithm converges well and in reasonable time for quite large
networks of 1000 players.10

Finally, this model provides a first step towards the equilibrium micro-foundation of
the exponential family of random graph models. The exponential random graph model11

(ERGM) assumes that the likelihood of observing a specific network configuration is an
exponential function of several network statistics, e.g. the number of edges, the number
of triangles, etc. The ERGM is widely used in practice, but to the best of my knowledge
there has been no rigorous study on the restrictions that the model imposes on preferences,
meeting technology and equilibrium. I show that some specifications of the ERGM can be

6For a small network with 10 players, a state-of-the-art supercomputer may take several years to evaluate
the constant at a single parameter value. This makes traditional optimization algorithms infeasible.

7The original algorithm was developed by Murray et al. (2006). I propose an approximate version of the
algorithm that does not require exact sampling, similar to Liang (2010)

8This simulation scheme, interleaving the parameter simulation and the network simulation, is similar to
Bayesian methods for dynamic discrete choice models developed in Norets (2009).

9See Wainwright and Jordan (2008) for an extended overview of mean-field methods for exponential
families.

10Without major modification of the network simulation algorithm, the estimation of very large networks
requires a huge amount of simulations. For networks with n ≥ 10000) players the deterministic approxima-
tions and asymptotic approximations provide a valid alternative approach. Diaconis and Chatterjee (2011)
shows conditions under which the mean-field approximation for the ERGM becomes asymptotically exact,
while Chandrasekhar and Jackson (2012) and Amir et al. (2012) focus on consistent estimators.

11See for example Snijders (2002), Wasserman and Pattison (1996), Diaconis and Chatterjee (2011), Kosk-
inen (2004).
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interpreted as the stationary equilibrium of my model in the special case of linear utilities.
If the preferences are linear in parameters, the stationary distribution of networks observed
in the long-run belongs to the discrete exponential family and has a likelihood similar to the
ERGM. However, not all the ERGM specifications are micro-founded and in general not all
the network statistics are compatible with the equilibrium micro-foundation.

The estimation is tested with artificial data and with Add Health data on school friend-
ships in US12 The simulations show that accurate posterior estimation can be performed in
reasonable time. The Add Health estimation with few networks confirm the existence of
homophily in US high schools.

This paper contributes to the recent literature on estimation of social network formation
models. The most closely related work is Christakis et al. (2010). In their model myopic
players meet sequentially and choose which links to form by maximizing current utility. The
sequence of meetings is unobservable, and therefore must be integrated out in the likelihood.
This computational challenge is addressed with an MCMC scheme that samples from the
space of meeting sequences. To limit the computational burden they assume that individuals
can meet only once, and linking decisions are permanent. In my model, I make assumptions
on the meeting technology that guarantee existence of a closed form solution for the station-
ary equilibrium distribution of networks. Players meet often and have the opportunity to
revise their links frequently. In addition, I provide complete characterizations of the strategic
equilibrium and the convergence properties of the estimation algorithm.

The paper is also related to recent work in Chandrasekhar and Jackson (2012) and Amir
et al. (2012): they provide a computationally tractable inference method for network for-
mation models, showing consistency of maximum likelihood estimators. The asymptotic
analysis is developed for large n, i.e. when the number of players goes to infinity.13 My algo-
rithm performs well in small samples and converges quite fast for networks of size n ≤ 1000.
For larger networks, the network simulation algorithm has to be modified to include larger
steps and improve mixing.14

An alternative approach uses pairwise stability as equilibrium concept: this usually leads
to multiplicity of equilibria15 and may preclude point identification. Sheng (2012) proposes

12This research uses data from Add Health, a program project designed by J. Richard Udry, Peter S.
Bearman, and Kathleen Mullan Harris, and funded by a grant P01-HD31921 from the Eunice Kennedy
Shriver National Institute of Child Health and Human Development, with cooperative funding from 17 other
agencies. Special acknowledgment is due Ronald R. Rindfuss and Barbara Entwisle for assistance in the
original design. Persons interested in obtaining Data Files from Add Health should contact Add Health, The
University of North Carolina at Chapel Hill, Carolina Population Center, 123 W. Franklin Street, Chapel
Hill, NC 27516-2524 (addhealth@unc.edu). No direct support was received from grant P01-HD31921 for this
analysis.

13The alternative approach is to prove consistency when the number of network observations grows large.
However, most network datasets contain only a single observation of a network.

14Mele (2011) proposes a simulated tempering algorithm that allows larger steps in the simulation. The
algorithm is useful when the likelihood has multiple modes. Atchade and Wang (forthcoming) consider an
adaptive MCMC exchange algorithm for exponential random graph models, showing asymptotic normality
of the estimated posterior.

15See Comola (2010) for example.
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computationally feasible moment inequalities to estimate a model of strategic network forma-
tion. Since pairwise stability of the network imposes pairwise stability of any subnetwork,
she can derive bounds on the probability of observing any (small) subnetwork. This re-
duces the computational burden due to the curse of dimensionality. Related approaches
are presented in DePaula et al. (2011) and Miyauchi (2012). The model presented here
avoids multiple equilibria by implicitly using the sequential network formation process as
an equilibrium selection mechanism. As a consequence, point identification is possible. My
estimation strategy alleviates the curse of dimensionality by use of the potential function in
simulations, and by avoiding exact evaluation of the likelihood function.

In my model the existence of equilibrium is guaranteed by the potential function char-
acterization. While the theoretical literature on network formation has used the potential
game characterization to guarantee existence and avoid cycles (Gilles and Sarangi (2004),
Jackson and Watts (2002)), the contribution in this paper is to show that the potential
function characterization reduces the computational complexity and allows identification of
structural preference parameters. The equilibrium characterization is nested in a discrete
choice framework: the random meeting technology and the preference shocks generate ran-
dom deviations from the Nash equilibria. The use of noise to generate unique equilibrium
predictions has been exploited in the theoretical literature.16 The novelty of my approach
is to exploit the random components of the model to derive a likelihood for the observed
network.

The model can be extended to include additional utility components, unobserved het-
erogeneity and preference heterogeneity. The estimation algorithm needs to include an ad-
ditional layer of simulation for the unobserved types. Bayesian data augmentation allows
estimation of models that account for missing links (see Appendix C). Recently, several
models have exploited the sequential framework or the potential game characterization to
endogenize both network formation and actions. Badev (2013) extends the model presented
in this paper to include a binary action (smoking), and separately identify the contribution
of friendship formation and individual decisions in smoking. The equilibrium characteriza-
tion generalizes the meeting technology: players can meet multiple agents, allowing more
complex deviations from equilibrium than single link updates. Hsieh and Lee (2012) and
Goldsmith-Pinkham and Imbens (forthcoming) use similar frameworks. The computational
challenges of these models closely mirror the ones shown here and are solved with MCMC
methods.17

The paper proceeds as follows. In section 2, I present the model’s details and fully char-
acterize the potential function and the unique stationary equilibrium. In addition, the model
is shown to provide micro-foundations for the ERGMS and possible extensions of the prefer-
ences are discussed. Section 3 proposes an approximate exchange algorithm for estimation.
I fully characterize the convergence properties of the algorithm. prove that the proposed

16See for example Jackson and Watts (2002), Blume (1993)
17Boucher (2013) shows that homophily has empirical power in a strategic model of network formation. His

model also produces a unique equilibrium and allows identification of the relative importance of individual
characteristics in determining the shape of the network.
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algorithm converges to the correct posterior distribution. The performance of the algorithm
is evaluated with artificial data and Add Health data in Section 4. Section 5 concludes.
Appendix A contains proof for the theoretical section. Appendix B provides details for the
estimation algorithm, and Appendix C show extensions with unobserved heterogeneity.

2 A Model of Network Formation

2.1 Setup

Let I = {1, 2, ..., n} be the set of agents, each identified by a vector of A (exogenous)
characteristics Xi = {Xi1, ..., XiA}, e.g. gender, wealth, age, location, etc. Let the matrix
X = {X1, X2, ..., Xn} collect the vectors of characteristics for the population and let X
denote the set of all possible matrices X. Time is discrete.

The social network is represented as a n× n binary matrix G ∈ G, where G is the set of
all n× n binary matrices. The entry gij is equal to 1 if individual i nominates individual j
as a friend and 0 otherwise; by convention gii = 0, for any i. The network G is directed, i.e.
gij = 1 does not necessarily imply gji = 1. This modeling choice reflects the structure of the
Add Health data, where friendship nominations are not necessarily mutual.18

Let the realization of the network at time t be denoted as gt and the realization of the
link between i and j at time t be gtij. The network including all the current links but gtij, i.e.
gt\gtij, is denoted as gt−ij; while gt−i denotes the network matrix excluding the i-th row (i.e.
all the links of player i).

2.1.1 Preferences

The players have utility functions defined over network realizations g ∈ G and population
characteristics X ∈ X , and indexed by parameters θ ∈ Θ. The utility of player i from a
network g and population attributes X = (X1, ..., Xn) at parameter θ is given by

Ui (g,X; θ) =
n∑
j=1

gijuij(θu)︸ ︷︷ ︸
direct friends

+
n∑
j=1

gijgjimij(θm)︸ ︷︷ ︸
mutual friends

+
n∑
j=1

gij

n∑
k=1
k 6=i,j

gjkvik(θv)

︸ ︷︷ ︸
friends of friends

+
n∑
j=1

gij

n∑
k=1
k 6=i,j

gkiwkj(θw)

︸ ︷︷ ︸
popularity

(1)

where uij(θu) ≡ u (Xi, Xj; θu), mij(θm) ≡ m (Xi, Xj; θm), vij(θv) ≡ v (Xi, Xj; θv) and wij(θw) ≡
w (Xi, Xj; θw) are (bounded) real-valued functions of the attributes. The utility of the net-
work is the sum of the net benefits received from each link. The total benefit from an

18Some authors refer to this data as perceived networks. See Wasserman and Faust (1994) for references.
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additional link has four components.
When player i creates a link to agent j, he receives a direct net benefit uij(θu), including

Figure 1: Components of the utility function

A. Direct friends

B. Mutual friends

C. Friends of friends

D. Popularity

The network contains n = 8 agents, belonging to two groups: blue and yellow. All the panels show a situation
in which player 4 decides whether to form a link to individual 5 (the dashed arrow from 4 to 5). Agent 4
receives different direct utility when he links a blue (Panel A, left) or a yellow (Panel A, right) individual.
Agent 4’s utility from an additional link is different if the link is unilateral (Panel B, left) or reciprocated
(Panel B, right). Furthermore, agent 4’s utility from friends of friends varies with their socioeconomic
composition: 3 blue individuals (Panel C, left) provide different utility than 2 blue and 1 yellow agents
(Panel C, right). Finally, agent 4 values how his new link affects his popularity, since he creates a new
indirect friendship for those who already have a link to him (agents 1,2 and 3). The utility of a link to agent
5 (which is yellow) when agents 1,2 and 3 are all blue (Panel D, left) is different than when agent 2 is yellow
and 1 and 2 are blue (Panel D, right).

both costs and benefits from the relationship. The net benefit can possibly be negative, e.g.
when only homophily enters payoffs of direct links, the net utility uij(θu) is positive if i and
j belong to the same group, while it is negative when they are of different types. This is
illustrated in Panel A of Figure 1 with a simple network of 8 agents. A player can be of blue
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or yellow type. The link that player 4 forms to individual 5 provides different direct payoff in
the two networks, since the type of 5 is different: blue for the network on the left and yellow
for the network on the right. In many models this component is specified as uij = bij − cij,
where bij indicates the (gross) benefit and cij the cost of forming the additional link gij. I
use the notation uij, since it does not require assumptions on the cost function.

A player receives additional utility mij(θm) if the link is mutual; a friendship has differ-
ent value when the other party reciprocates. A student may consider an individual to be a
friend, but that person may not. Panel B of Figure 1 isolates this component: a link from
agent 4 to agent 5 has a different value if agent 5 reciprocates (right network).

Players value the composition of friends of friends. When i is deciding whether to be-
friend j, she observes j’s friends and their socioeconomic characteristics. Each of j’s friend
provides additional utility v(Xi, Xk; θv) to i. In this model, an agent who has the opportunity
to form an additional link, values a white student with three Hispanic friends as a different
good than a white student with two white friends and one African American friend.19 In
other words, individuals value both exogenous heterogeneity and endogenous heterogeneity:
the former is determined by the socioeconomic characteristics of the agents, while the latter
arises endogenously with the process of network formation. I assume that only friends of
friends are valuable and they are perfect substitutes: individuals do not receive utility from
two-links-away friends. In Panel C of Figure 1, from the perspective of agent 4, agent 5 in
the left network is a different good than agent 5 in the right network, since the composition
of his friends is different.

The fourth component corresponds to a popularity effect. Consider Panel D in Figure 1.
When agent 4 forms a link to agent 5, he automatically creates an indirect link for agents
1, 2 and 3. Thus agent 4 generates an externality. For example, suppose there is homophily
in indirect links. Then in the left network the externality is negative for all three agents (1,
2 and 3); and in the right network it is negative for 1 and 3, but positive for 2. Therefore,
in the left network the popularity of 4 goes down, while in the right network the decrease in
popularity is less pronounced.

2.1.2 Network Formation Process

The process of network formation follows a stochastic best-response dynamics (Blume (1993)),
generating a Markov chain of networks. The main ingredients of this process are random
meetings and utility maximization. The implicit assumption is that meetings are very fre-
quent, and the players can revise their linking strategies often.

Meeting Technology. At the beginning of each period a player i is randomly selected
from the population, and he meets individual j, according to a meeting technology. The
meeting process is a stochastic sequence m = {mt}∞t=1 with support I × I. The realizations

19A similar assumption is used in De Marti and Zenou (2009) where the agents’ cost of linking depends
on the racial composition of friends of friends. Their model is an extension of the connection model of
Jackson and Wolinsky (1996), and the links are formed with mutual consent. The corresponding network is
undirected.
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of the meeting process are ordered pairs mt = {i, j}, indicating which agent i should play
and which link gij can be updated at period t.20

The probability that player i is randomly chosen from the population and meets agent j
is defined as

Pr
(
mt = ij|gt−1, X

)
= ρ

(
gt−1, Xi, Xj

)
(2)

where
∑n

i=1

∑n
j=1 ρ (g,Xi, Xj) = 1 for any g ∈ G. The meeting probability depends on

the current network (e.g. the existence of a common friend between i and j) and the
characteristics of the pair. This general formulation includes meeting technologies with
a bias for same-type individuals as in Currarini et al. (2009). The simplest example of
meeting technology is an i.i.d. discrete uniform process with ρ (gt−1, Xi, Xj) = 1

n(n−1)
. An

example with bias for same-type agents is ρ (gt−1, Xi, Xj) ∝ exp [−d (Xi, Xj)], where d (·, ·)
is a distance function.

Utility Maximization. Conditional on the meeting mt = ij, player i updates the link gij
to maximize his current utility, taking the existing network gt−ij as given. I assume that the
agents do not take into account the effect of their linking strategy on the future evolution
of the network. The players have complete information, since they can observe the entire
network and the individual attributes of all agents.21 Before updating his link to j, individual
i receives an idiosyncratic shock ε ∼ F (ε) to his preferences that the econometrician cannot
observe. This shock models unobservables that could influence the utility of an additional
link, e.g. mood, gossips, fights, etc. Player i links agent j at time t if and only if it is a best
response to the current network configuration, i.e. gtij = 1 if and only if

Ui
(
gtij = 1, gt−1

−ij , X; θ
)

+ ε1t ≥ Ui
(
gtij = 0, gt−1

−ij , X; θ
)

+ ε0t. (3)

I assume that when the equality holds, the agent plays the status quo.22 The network forma-
tion process generates a Markov chain of networks, with transition probabilities determined
by the meeting process and agents’ linking choices.

2.2 Equilibrium Analysis

I impose an additional assumption on the functional forms of the utility functions, which
provides important equilibrium and identification restrictions. I assume that the utility
mij(θm) obtained from mutual links is symmetric, and that the utility of an indirect link
vij(θv) has the same functional form as the utility from the popularity effect wij(θv).

20Several models incorporate a meeting technology in the network formation process. Jackson and Watts
(2002) assume individuals meet randomly according to a discrete uniform distribution. Currarini et al. (2009)
introduce a matching process that is biased towards individuals of the same type. Christakis et al. (2010)
develop a dynamic model, where the sequence of meetings determines which players have the opportunity
to form a link in each period.

21More precisely, to make a decision about linking, the player needs to observe his in-links and the out-links
of his friends.

22This assumption does not affect the main result and is relevant only when the distribution of the
preference shocks is discrete.
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ASSUMPTION 1 (Preferences) The preferences satisfy the following restrictions

m (Xi, Xj; θm) = m (Xj, Xi; θm) for all i, j ∈ I
w (Xk, Xj; θv) = v (Xk, Xj; θv) for all k, j ∈ I

A direct consequence of the assumption is that the utility function becomes

Ui (g,X; θ) =
n∑
j=1

gijuij(θu) +
n∑
j=1

gijgjimij(θm)

+
n∑
j=1

gij

n∑
k=1
k 6=i,j

gjkvik(θv) +
n∑
j=1

gij

n∑
k=1
k 6=i,j

gkivkj(θv) (4)

The symmetry in mij(θm) does not imply that a mutual link between i and j gives both
the same utility. If i and j have a mutual link, they receive the same common utility com-
ponent (mij(θm)) but they may receive different payoffs from direct or indirect links. Two
individuals with the same exogenous characteristics Xi = Xj who form a mutual link receive
the same uij(θu) and mij(θm), but they may have different payoffs from the additional link
because of the composition of their friends of friends and their popularity. Therefore, the
first part of the assumption is crucial for identification of the utility from indirect links and
popularity.

The second part of the assumption imposes an identifying restriction to the externality
generated by i when creating a link to j: any individual k that has formed a link to i, has an
additional indirect friend, i.e. j, who agent k values by an amount w (Xk, Xj; (θw)). When
w (Xk, Xj; (θv)) = v (Xk, Xj; (θv)), an individual i values his popularity effect as much as k
values the indirect link to j, i.e., i internalizes the externality he creates.

Assumption 1 is the main ingredient that guarantees a closed form solution for the sta-
tionary equilibrium of the model. Without this assumption, the model would still have a
unique stationary equilibrium, however it would be impossible to characterize the likelihood
function in closed form.23,24

The following proposition highlights a crucial result of this paper.

PROPOSITION 1 (Potential Function)
Under Assumption 1, the deterministic component of the incentives of any player in any

23Estimation of such a model could be performed using Approximate Bayesian Computations (see Marjo-
ram et al. (2003) for example), but the computational burden is even more challenging.

24The first part of the assumption is a normalization of the utility function that allows identification for the
utility of indirect links and popularity. The second part of the assumption is an identification restriction, that
guarantees the model’s coherency in the sense of Tamer (2003). In simple words, this part of the assumption
guarantees that the system of conditional linking probabilities implied by the model generates a proper joint
distribution of the network matrix.Similar restrictions are also encountered in spatial econometrics models
(Besag, 1974) and in the literature on qualitative response models (Heckman, 1978; Amemiya, 1981)
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state of the network are summarized by a potential function, Q : G × X → R

Q (g,X; θ) =
n∑
i=1

n∑
j=1

gijuij(θu) +
n∑
i=1

n∑
j>i

gijgjimij(θm) +
n∑
i=1

n∑
j=1
j 6=i

n∑
k=1
k 6=i,j

gijgjkvik(θv), (5)

and the network formation game is a Potential Game.

Proof. See Appendix A

The intuition for the result is simple.25 Under the restrictions of Assumption 1, for any
player i and any link gij we have

Q (gij, g−ij, X; θ)−Q (1− gij, g−ij, X; θ) = Ui (gij, g−ij, X; θ)− Ui (1− gij, g−ij, X; θ)

Consider two networks, g = (gij, g−ij) and g′ = (1−gij, g−ij), that differ only with respect
to one link, gij, chosen by individual i: the difference in utility that agent i receives from
the two networks, Ui (g,X; θ)−Ui (g′, X; θ), is exactly equal to the difference of the potential
function evaluated at the two networks, Q (g,X; θ) − Q (g′, X; θ). That is, the potential is
an aggregate function that summarizes both the state of the network and the deterministic
incentives of the players in each state.

Characterizing the network formation as a potential game facilitates the analysis and the
simulations. To compute the equilibria of the model, there is no need to keep track of each
player’s behavior: the potential function contains all the relevant information.26

To analyze the long run behavior of the model, I impose more structure on the meeting
technology.27

ASSUMPTION 2 (Meeting Process) Any meeting is possible, i.e., for any ij ∈ I × I

ρ(gt−1, Xi, Xj) > 0 (6)

The meeting process is such that any player can be chosen and any pair of agents can meet.
This assumption guarantees that any equilibrium network can be reached with positive

25See Monderer and Shapley (1996) for definitions and properties of potential games.
26This property is key for the analysis of networks with many players: the usual check for existence of

profitable deviations from the Nash equilibrium can be performed using the potential, instead of checking
each player’s possible deviation in sequence. The computation of all profitable deviations for each player
involves n(n − 1)2n(n−1) operations: each player has n − 1 possible deviations, there are n players and
a total of 2n(n−1) possible network configurations. As it is shown below (Proposition 2), when the game
is a potential game, the computation of all Nash equilibria is equivalent to finding the local maxima of
the potential function. This corresponds to evalutating the potential function for all the 2n(n−1) possible
network structures. The latter task involves fewer operations by a factor of n(n − 1), thus decreasing the
computational burden.

27Christakis et al. (2010) assume that individuals can meet only once and their links remain in place forever.
This assumption is convenient when estimating a large network, but it does not allow the characterization
of the stationary equilibrium.
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probability. For example, a discrete uniform distribution satisfies this assumption.
A Nash equilibrium is a network in which any player has no profitable deviations from

his current linking strategy, when randomly selected from the population. We can show that
the set of Nash networks correspond to the local maxima of the potential function. Suppose
that the current network is a Nash network. As a consequence, if a player deviates from the
current linking strategy, he receives less utility.28 Since the change in utility for any agent is
equivalent to the change in potential, any deviation from the Nash network must decrease
the potential. It follows that the Nash network must be a local maximizer of the potential
function over the set of networks that differ from the current network for at most one link.

In the absence of preference shocks, the consequences of assumptions 1 and 2 are that
the model will evolve according to a Markov Chain, converging to one of the Nash networks
with probability one (see formal details in Appendix A). Suppose a player is drawn from the
meeting process. Such agent will play a best response to the current network configuration.
Therefore, his utility cannot decrease. This holds for any player and any period. It follows
that the potential is nondecreasing over time. Since there is a finite number of possible
networks, in the long run, the sequence of networks must reach a local maximum of the
potential, i.e., a Nash equilibrium.

I make the following standard parametric assumption on the shocks, that allows me to
characterize the stationary distribution and transition probabilities.

ASSUMPTION 3 (Idiosyncratic Shocks) The shock follows a Type I extreme value
distribution, i.i.d. among links and across time.

The probability of a link between i and j, given a meeting mt = ij and previous period
network configuration gt−1 is thus given by

Pr
(
gtij = 1

∣∣ gt−1
−ij , X; θ

)
= Pr

[
ε0t − ε1t ≤ Ui

(
1, gt−1
−ij , X; θ

)
− Ui

(
0, gt−1
−ij , X; θ

)]
(7)

=

exp

[
uij(θu) + gt−1

ji mij(θm) +
∑
k 6=i,j

gt−1
jk vik(θv) +

∑
k 6=i,j

gt−1
ki vkj(θv)

]

1 + exp

[
uij(θu) + gt−1

ji mij(θm) +
∑
k 6=i,j

gt−1
jk vik(θv) +

∑
k 6=i,j

gt−1
ki vkj(θv)

](8)

Under Assumptions 1-3, the network evolves as a Markov chain with transition probabil-
ities given by the conditional choice probabilities (8) and the probability law of the meeting
process mt.

One can easily show that the sequence [g0, g1, ...., gt] is irreducible and aperiodic.29 The
following theorem summarizes the main theoretical result.

28When the utility from the equilibrium and the deviation is the same, the agent plays the status quo,
i.e., the Nash strategy.

29 Intuitively, since the meeting probability Pr (mt = ij) > 0 for all ij, there is always a positive probability
of reaching a new network in which the link gij can be updated. The logistic shock assumption implies that
there is always a positive probability of switching to another state of the network, thus eliminating absorbing
states.
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THEOREM 1 (Uniqueness and Characterization of Stationary Equilibrium)
Consider the network formation game with idiosyncratic shocks, under Assumptions 1-3.

1. There exists a unique stationary distribution π(g,X; θ)

2. If the meeting probability of i and j does not depend on the existence of a link between
them, i.e.,

ρ
(
gt−1, Xi, Xj

)
= ρ

(
gt−1
−ij , Xi, Xj

)
. (9)

for any i, j ∈ I. Then the stationary distribution π(g,X; θ) is

π (g,X; θ) =
exp [Q (g,X; θ)]∑

ω∈G
exp [Q (ω,X; θ)]

, (10)

where Q (g,X; θ) is the potential function (5).

Proof. In Appendix A

The first part of the proposition follows directly from the irreducibility and aperiodicity
of the Markov process generated by the network formation game. The uniqueness of the
stationary distribution is crucial in estimation, since one does not need to worry about
multiple equilibria. Furthermore, the stationary equilibrium characterizes the likelihood of
observing a specific network configuration in the data. As a consequence, I can estimate
the structural parameters from observations of only one network at a specific point in time,
under the assumption that the observed network is drawn from the stationary equilibrium.

The second part of the proposition provides a closed-form solution for the stationary
distribution. The latter can be interpreted as the probability of observing a specific network
structure, when the network is observed in the long run. In the long run, the system
of interacting agents will visit more often those states/networks that have high potential.
Therefore a high proportion of the possible networks generated by the network formation
game, will correspond to Nash networks.

The stationary distribution π (g,X; θ) includes a normalizing constant

c (G, X; θ) ≡
∑
ω∈G

exp [Q (ω,X; θ)] (11)

that guarantees that (10) is a proper probability distribution. Unfortunately, this normaliz-
ing constant greatly complicates estimation, since it cannot be evaluated exactly or approx-
imated with precision. The details about how this problem is circumvented are presented in
the empirical strategy section.

2.3 Micro-foundations for Exponential Random Graphs

The Exponential Random Graph model is a statistical model of random network formation,
with complex dependencies among links. Exponential random graphs have been successfully

13



used to fit social network data, providing a useful benchmark for alternative models. How-
ever, as any random network formation model, they lack the equilibrium micro-foundations
of the strategic literature.30 The model proposed in this paper nests the ERGM as a special
case. Therefore it provides a first attempt of equilibrium micro-foundations to these class of
models.

Assume that the utility functions u, m and v depend linearly on the vectors of parameters.
Define the functions H : RA × RA → R.

ASSUMPTION 4 (Linearity of Utility) The utility functions are linear in parameters

u (Xi, Xj, θu) = = θ′uHu (Xi, Xj)

m (Xi, Xj, θm) = = θ′mHm (Xi, Xj)

v (Xi, Xj, θv) = = θ′vHv (Xi, Xj)

The assumption of linearity does not exclude interactions among different characteristics,
for example interactions of race and gender of both individuals. We can consider different
specifications, including different sets of variables for direct, mutual and indirect links. In-
teractions of individual and network-level attributes are also possible.

The main consequence of the linearity assumption is that the stationary equilibrium of
the model belongs to the discrete exponential family (Lehman (1983)).

PROPOSITION 2 (Exponential Family Likelihood)
Under Assumptions 1-4, the stationary distribution π (g,X; θ) belongs to the exponential
family, i.e., it can be written in the form

π (g,X; θ) =
exp [θ′t (g,X)]∑

ω∈G
exp [θ′t (ω,X)]

, (12)

where θ = (θu, θm, θv)
′ is a (column) vector of parameters and t (g,X) is a (column) vector

of canonical statistics.

Proof. See Appendix A

The vector t (g,X) = (t1 (g,X) , ..., tK (g,X)) is a vector of sufficient statistics for the
network formation model. This vector may include the number of links, the number of
whites-to-whites links, the number of male-to-female links and so on.

This likelihood is analogous to the one of exponential random graph models: we can
interpret some specification of ERGMs as the stationary equilibrium of a strategic game

30Frank and Strauss (1986) developed the theory of Markov random graphs. These are models of random
network formation in which there is dependence among links: the probability that a link occurs depends
on the existence of other links. Wasserman and Pattison (1996) generalized the Markov random graphs
to more general dependencies, developing the Exponential Random graph models. Snijders (2002) reviews
these models and the related estimation techniques.
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of network formation, where myopic agents follow a stochastic best response dynamics and
utilities are linear functions of the parameters. The payoff specification in the model
assumes that individuals receive utility from four components. This results into a ERGM
model that includes links, mutual links and 2-mixed-stars. The inclusion of additional utility
components will give rise to a different ERGM specification. In general additional compo-
nents of the utility functions need to be restricted in analogous ways as in Assumption 1.31

Therefore, not all the ERGM specifications are necessarily micro-founded or compatible with
this model. Nonetheless, the assumptions provide a more transparent interpretation of the
restrictions imposed by the ERGM to the primitives of the network formation mechanism.

2.4 Additional Utility Components

It is possible to modify the utility function (1) to include additional components. For exam-
ple, one may be interested in studying preferences that include utility from cyclic triangles
effects, i.e. individual i nominates j, j nominates k and k nominates i. The latter can be
modeled as a component of the utility τ that varies with the characteristics of the three
individuals involved in the relationships, i.e. τ(Xi, Xj, Xk; θτ ) for all i, j, k ∈ I. The utility
is easily modified as

Ui(g,X; θ) =
n∑
j=1

gijuij(θu) +
n∑
j=1

gijgjimij(θm)

+
n∑
j=1

gij
∑
k=1
k 6=i,j

gkivkj(θv) +
n∑
j=1

gij
∑
k=1
k 6=i,j

gjkvik(θv) +
n∑
j=1

gij
∑
k=1
k 6=i,j

gjkgkiτijk(θτ )

However, to guarantee the existence of a potential function, we need an additional assump-
tion: the function τ is such that τijk(θτ ) = τi′j′k′(θτ ) for any i′, j′, k′ permutation of i, j, k.
The potential is easily computed as

Q(g,X; θ) =
n∑
i=1

n∑
j=1

gijuij(θu) +
n∑
i=1

∑
j>i

gijgjimij(θm)

+
n∑
i=1

n∑
j=1

gij
∑
k=1
k 6=i,j

gjkvik(θv) +
1

3

n∑
i=1

n∑
j=1

gij
∑
k=1
k 6=i,j

gjkgkiτijk(θτ )

31See extensions to triangles below.
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If we want to extend the specification and include an utility component that captures the
additional utility from friends in common, we can modify the utility as

Ui(g,X; θ) =
n∑
j=1

gijuij(θu) +
n∑
j=1

gijgjimij(θm) +
n∑
j=1

gij
∑
k=1
k 6=i,j

gjkvik(θv)

+
n∑
j=1

gij
∑
k=1
k 6=i,j

gkivkj(θv) +
n∑
j=1

gij
∑
k=1
k 6=i,j

(gjk + gkj)(gki + gik)τijk(θτ )

and compute the potential accordingly.
In general, it is possible to include additional utility components to (1) as long as we can

find restrictions on the payoffs that guarantee the existence of a potential function.

3 Estimation Strategy

3.1 Computational Problem

The structural parameters are estimated using a Bayesian approach. Let p (θ) be the prior
distribution, and let the likelihood function of the observed data (g,X) be the long-run
stationary distribution of the model π (g,X, θ). The posterior distribution of θ is

p (θ|g,X) =
π (g,X, θ) p (θ)∫

Θ
π (g,X, θ) p (θ) dθ

. (13)

Intuitively, the posterior is the distribution of the parameters that are most likely to generate
the data g, given the model π (g,X, θ) and the prior p (θ).

The posterior is usually estimated using a Metropolis-Hastings algorithm that avoids
direct computation of the integral

∫
Θ
π (g,X, θ) p (θ) dθ. This algorithm generates a Markov

chain of parameters {θ0, θ1, θ2, ..} whose unique invariant distribution is the posterior (13). A
Weak Law of Large Numbers guarantees that sample averages computed using the sequence
generated by the chain, converge to the expectation under the posterior distribution.

At each iteration s, with current parameter θs = θ, a new parameter vector θ′ is proposed
from a distribution qθ (·|θ). At iteration s+ 1 the new parameter θs+1 is updated according
to

θs+1 =

{
θ′ with prob. α (θ, θ′)
θ with prob. 1− α (θ, θ′) ,

(14)

where α (θ, θ′) is computed as

α (θ, θ′) = min

{
1,
p (θ′|g,X) qθ (θ|θ′)
p (θ|g,X) qθ (θ′|θ)

}
= min

{
1,

exp [Q (g,X, θ′)]

exp [Q (g,X, θ)]

c (G, X, θ)
c (G, X, θ′)

p (θ′)

p (θ)

qθ (θ|θ′)
qθ (θ′|θ)

}
.
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However, this naive version of the Metropolis-Hastings algorithm cannot be used for this
model. The acceptance probability α (θ, θ′) depends on the ratio c (G, X, θ) /c (G, X, θ′),
whose exact computation is infeasible even for very small networks. To be concrete, consider
a network with n = 10 agents. According to (11), c (G, X, θ) =

∑
ω∈G

exp [Q (ω,X, θ)]: to

compute the constant at the current parameter θ we need to evaluate the potential function
for all 290 w 1027 possible networks with 10 agents and compute their sum. This task would
take a very long time even for a state-of-the art supercomputer. In general with a network
containing n players, we have to sum over 2n(n−1) possible network configurations.32

3.2 Estimation Algorithm

To solve the estimation problem, I propose an approximate version of the exchange algorithm
(see Murray et al. (2006)). The approximate algorithm uses a double Metropolis-Hastings
step to avoid the computation of the normalizing constant c (G, X, θ) in the likelihood, as in
Liang (2010).33 Several authors have proposed similar algorithms in the related literature
on Exponential Random Graphs Models (ERGM).34

In this section I describe the algorithm for a single network, while in the appendix I
provide the extension for multiple independent networks.35 This is especially important for
policy: schools may have unobserved differences that impact the network formation process
and using multiple networks may partially correct for that.

The idea of the algorithm is to sample from an augmented distribution using an auxiliary
variable. At each iteration, the algorithm proposes a new parameter vector θ′, drawn from a
suitable proposal distribution qθ(θ

′|θ); in the second step, it samples a network g′ (the aux-
iliary variable) from the likelihood π (g′, X, θ′); finally, the proposed parameter is accepted
with a probability αex(θ, θ

′), such that the Markov chain of parameters generated by these
update rules, has the posterior (13) as unique invariant distribution.

32A supercomputer that can compute 1012 potential functions in 1 second would take almost 40 million
years to compute the constant once for a network with n = 10 players. The schools used in the empirical
section have between 20 and 159 enrolled students. This translates into a minimum of 2380 and a maximum
of 225122 possible network configurations.

33This improvement comes with a possible cost: the algorithm may produce MCMC chains of parameters
that have very poor mixing properties (Caimo and Friel, 2010) and high autocorrelation. I partially correct
for this problem by carefully calibrating the proposal distribution. In this paper I use a random walk
proposal. Alternatively one could update the parameters in blocks or use recent random block techniques
as in Chib and Ramamurthy (2009) to improve convergence and mixing.

34Caimo and Friel (2010) use the exchange algorithm to estimate ERGM. They improve the mixing of
the sampler using the snooker algorithm. Koskinen (2008) proposes the Linked Importance Sampler Aux-
iliary variable (LISA) algorithm, which uses importance sampling to provide an estimate of the acceptance
probability. Another variation of the algorithm is used in Liang (2010).

35When the data consist of several independent school networks, I use a parallel version of the algorithm
that stores each network in a different processor. Each processor runs the simulations independently and the
final results are summarized in the master processor, that updates the parameters for next iteration. Details
in Appendix.
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3.2.1 Network Simulations

To use the exchange algorithm, I need to draw random samples from the stationary distri-
bution of the network formation model. Direct simulation is not possible because the nor-
malizing constant c (G, X, θ) is computationally infeasible, for the reasons explained above.
Therefore I rely on Markov Chain Monte Carlo simulation methods.36

For a fixed parameter value θ, the algorithm simulates a Markov chain of networks whose
unique invariant distribution is (10). As the number of iterations R becomes large, the sim-
ulated networks are (approximate) samples from the stationary distribution of the model
evaluated at parameter θ.

ALGORITHM 1 Fix a parameter value θ. At iteration r, with current network gr

1. Propose a network g′ from a proposal distribution

g′ ∼ qg (g′|gr) (15)

2. Update the network according to

gr+1 =

{
g′ with prob. αmh(gr, g

′)
gr with prob. 1− αmh(gr, g′)

(16)

where

αmh(gr, g
′) = min

{
1,

exp [Q(g′, X, θ)]

exp [Q(gr, X, θ)]

qg (gr|g′)
qg (g′|gr)

}
(17)

At each iteration of ALGORITHM 1 a random network g′ is proposed, and the update is
accepted with probability αmh(gr, g

′). The main advantage of this simulation strategy is that
the acceptance ratio αmh(gr, g

′) does not contain the normalizing constant c (G, X, θ) of the
stationary distribution. Each quantity in the acceptance ratio can be computed exactly.

The Metropolis-Hastings structure of the algorithm guarantees convergence. Standard
results37 show that the chain generated by the algorithm converges uniformly to the likelihood

36The algorithm used in this paper is similar to the Metropolis-Hastings algorithm proposed in Snijders
(2002). I also experimented with the Simulated Tempering algorithm proposed in Mele (2011). The latter
may be useful when the stationary distribution of the network formation model has more than one mode.
While it improves the mixing of the chain, it does so by increasing the time needed to collect a sample.
In this context, a set of experiments with artificial data revealed virtually no difference between the Simu-
lated Tempering results and the simpler local Metropolis-Hastings updates for networks of moderate size.
Therefore I use the latter in this paper.

37See Meyn and Tweedie (2009), Levin et al. (2008)
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of the model. Diaconis and Stroock (1991) show that for any initial network g0, the rate of
convergence can be bounded as

2 sup
g∈G

∣∣∣π (g, θ)− P(r)
θ (g|g0)

∣∣∣ ≤√1− π (g0, θ)

π (g0, θ)
λ∗ (θ)r (18)

where P(r)
θ (g|g0) is the r step transition of the algorithm, started at network g0 and λ∗ (θ) =

max {λ2 (θ) , |λ2n(n−1) (θ) |} is the second highest eigenvalue of ALGORITHM 1’s transition
matrix.

The bound (18) suggests that the researcher can improve convergence through a careful
choice of the initial network and proposal distributions.38 The choice of the initial network is
quite trivial in this model, and it is given by the observed network g. There are two reasons
for this choice. First, in the high density region of the posterior the observed network g

should have high probability according to the model. This decreases
√

1−π(g0,θ)
π(g0,θ)

. Second, the

result in Lemma 1 in Appendix B shows that this choice guarantees that the approximate
and the exact exchange algorithm have the same acceptance ratio, for any length R of the
simulation. Therefore, the proof of convergence to the correct posterior only need to show
the convergence of the proposal distribution (see details in Appendix B).

3.2.2 Posterior Simulation

I propose an approximate version of the exchange algorithm developed by Murray et al.
(2006) to sample from distributions with intractable constants. In the original algorithm,
one needs to draw exact samples from the stationary equilibrium of the model. However,
this would require an enormous number of steps using the network simulation algorithm. I
instead exploit Lemma 1 (in Appendix B) to decrease the number of simulations. The Lemma
implies that my approximate algorithm and the exact algorithm have the same probability
of accepting the proposed parameter.39

ALGORITHM 2 (APPROXIMATE EXCHANGE ALGORITHM)
Fix the number of simulations R. At each iteration t, with current parameter θt = θ and
network data g:

38In the previous version of the paper, I used several alternative proposals qg (·|·). First, a move that
updates only one link per iteration, proposing to swap the link value. At each iteration a random pair of
agents (i, j) is selected from a discrete uniform distribution, and it is proposed to swap the value of the link
gij to 1 − gij . Second, to improve convergence, I allow the sampler to propose bigger moves: with a small
probability pinv, the sampler proposes a to invert the network matrix, i.e. g′ = 1 − g, and the proposal is
accepted with probability αmh(g, g′). This move is suggested in Geyer (1992) and Snijders (2002). Snijders
(2002) argues that this is particularly useful in case of a bimodal distribution. These proposals directly
modify the transition matrix of ALGORITHM 1, decreasing the value of the second highest eigenvalue.

39The details require a careful use of the detailed balance condition for the network simulation model. See
Appendix B.
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1. Propose a new parameter θ′ from a distribution qθ(·|θ),

θ′ ∼ qθ(·|θ). (19)

2. Start ALGORITHM 1 at the observed network g, iterating for R steps using param-
eter θ′ and collect the last simulated network g′

g′ ∼ P(R)
θ′ (g′|g). (20)

3. Update the parameter according to

θt+1 =

{
θ′ with prob. αex (θ, θ′, g′, g)
θ with prob. 1− αex (θ, θ′, g′, g)

where

αex(θ, θ
′, g′, g) = min

{
1,

exp [Q(g′, X, θ)]

exp [Q(g,X, θ)]

p (θ′)

p (θ)

qθ (θ|θ′)
qθ (θ′|θ)

exp [Q(g,X, θ′)]

exp [Q(g′, X, θ′)]

}
. (21)

The main advantage of this algorithm is that all quantities in the acceptance ratio (21)
can be evaluated: there are no integrals or normalizing constants to compute. This simple
modification of the original Metropolis-Hastings scheme makes estimation feasible.

The details of the algorithm, the relative proofs of convergence to the posterior and
mixing rates are considered in Appendix B. The algorithm is easily extended to estimate
the model using multiple networks using parallelization (see Appendix B). Here I explain
intuitively why the sampler works, with the help of Figure 2.

For ease of exposition, assume a relatively flat prior, i.e. p(θ)/p(θ′) ' 1. Start the
sampler at parameter θ, which has high posterior probability, given the data g. That is,
there is good agreement between the data and the parameter, so it is likely that the data
are generated from a model with parameter θ. This is displayed on the left panel of Figure
2. We propose a parameter θ′ that belongs to a low probability region of the posterior. This
means that there is a low probability that the observed network g is generated by parameter
θ′. As a consequence the ratio

p(θ′|g,X)

p(θ|g,X)
' π(g,X, θ′)

π(g,X, θ)

would be very small, as indicated in Panel B of Figure 2. Let’s start the network simulations
using parameter θ′. The sequence of simulated networks will sequentially climb the new
stationary distribution π(·, X, θ′), moving away from the stationary distribution π(·, X, θ).
This is indicated in Figure 2 (Panel B) with a simulation of 2 steps: starting from g we obtain
two networks, g1 and g′. Network g′ is closer to a high probability region of π(·, X, θ′) than
to a high probability region of π(·, X, θ), as long as the algorithm was run for a sufficiently
large number of steps R. Therefore the ratio

π(g′, X, θ)

π(g′, X, θ′)
(22)
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Figure 2: The Exchange Algorithm

A. Posterior Distribution B. Two Stationary Equilibria

The graph on the left is the posterior distribution, given the data. The graph on the right represents two
stationary equilibria of the model, one at parameter θ (blue) and one at parameter θ′ (red). The iteration
t starts with parameter θ. It is proposed to update the parameter using proposal θ′. The algorithm start
sampling networks from the stationary distribution at parameter θ′ (red) and quickly moves from g to g′.

The probability of accepting the proposed parameter θ′ is proportional to the ratio π(g′,X,θ)
π(g′,X,θ′)

π(g,X,θ′)
π(g,X,θ) , which

is small as indicated in the graph. In summary, a move from the high density region of the posterior (θ) to
a low density region (θ′) is likely to be rejected. For the same reasoning a move from θ′ to θ is very likely to
be accepted. Therefore the algorithm produces samples from the correct posterior distribution.

is small. Notice that the the product of the latter ratios

π(g′, X, θ)

π(g′, X, θ′)

π(g,X, θ′)

π(g,X, θ)
=

exp [Q(g′, X, θ)]

exp [Q(g,X, θ)]

exp [Q(g,X, θ′)]

exp [Q(g′, X, θ′)]

c(G, X, θ′)
c(G, X, θ)

c(G, X, θ)
c(G, X, θ′)

=
exp [Q(g′, X, θ)]

exp [Q(g,X, θ)]

exp [Q(g,X, θ′)]

exp [Q(g′, X, θ′)]
.

is small, and it is contained in (21). As a consequence the acceptance ratio of the exchange
algorithm is low and the proposed parameter θ′ is very likely to be rejected. If we start the
sampler at θ′ and propose θ, the update is very likely to be accepted by the same intuitive
argument.

In summary, the sampler is likely to accept proposals that move towards high density
regions of the posterior, but it is likely to reject proposals that move towards low density
regions of the posterior. This is the intuition behind the sampler. The formal statement
about convergence is contained in the following theorem.

THEOREM 2 (Ergodicity of the Approximate Exchange Algorithm). The approximate
exchange algorithm is ergodic, and it converges to the correct posterior distribution.
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1. (Convergence)) Let P̃
(s)
R (θ0, ·) be the s-th step transition of the approximate ex-

change algorithm, when the auxiliary network is sampled using R steps of the network
simulation algorithm and the initial parameter of the simulation is θ0. Let ‖·‖TV be
the total variation distance and p (·|g,X) the posterior distribution.
Then, for any ε > 0 there exist R0 ∈ N and S0 ∈ N such that for any R > R0 and
s > S0 and any initial parameter vector θ0 ∈ Θ∥∥∥P̃ (s)

R (θ0, ·)− p (·|g,X)
∥∥∥
TV
≤ ε (23)

2. (WLLN) A Weak Law of Large Numbers holds: for any initial parameter vector θ0 ∈ Θ
and any bounded integrable function h(·)

1

S

S∑
s=1

h (θs)
P−→
∫

Θ

h (θ) p (θ|g,X) dθ (24)

Proof. In Appendix B.

The theorem states that the algorithm produces good samples as long as the number of steps
of the network simulation algorithm is big enough and the algorithm is run for a sufficient
number of iterations.

In general, for a fixed number of network simulations R the samples generated by the
algorithm will converge to a posterior that is ”close” to the correct posterior. As R → ∞
the algorithm converges to the exact exchange algorithm of Murray et al. (2006), producing
exact samples from the posterior distribution. However, an higher value of R would increase
the computational cost and result in a higher rejection rate for the proposed parameters.
The results in the next section provide some guidance on setting a suitable R, without
compromising computational efficiency.

3.3 Convergence and Feasibility

The most expensive step of the approximate exchange algorithm is the network simulation.
To gain some insights on the feasibility of estimation, I extend the analysis of Bhamidi et al.
(2011) to directed networks and show that the model presented here has good convergence
properties, at least in the linear utility specification.

Let’s define the function ϕ(µ, θ)

ϕ(µ, θ) ≡
exp

[
ψ1(θ(1),X)

n(n−1)
+ 2

ψ2(θ(2),X)

n(n−1)
µ
]

1 + exp
[
ψ1(θ(1),X)

n(n−1)
+ 2

ψ2(θ(2),X)

n(n−1)
µ
] (25)

and its derivative with respect to µ is ϕ′(µ, θ). The equation is derived in Appendix through
variational approximations for the exponential family (see Wainwright and Jordan (2008),
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Jaakkola (2000) for an introduction). The function
ψ1(θ(1),X)

n(n−1)
is a function of the sufficient

statistics of the model that involve one link, i.e. direct utility. The function
ψ2(θ(2),X)

n(n−1)
is a

function of network statistics that involve interactions of two links, i.e. mutual and indi-
rect utility. Intuitively the mean-field equation (25) is (approximately) the probability of
updating a link if the network is generated as an Erdos-Renyi graph with link formation
probability µ.

We partition the parameter space according to the following definition.

DEFINITION 1 A parameter vector θ belongs to the high temperature region if the equa-
tion ϕ(µ, θ) = µ has a unique solution µ∗ with ϕ′(µ, θ) < 1. We write θ ∈ HT .

A parameter vector θ belongs to the low temperature region if the equation ϕ(µ, θ) = µ
has at least two solutions µ∗ with ϕ′(µ, θ) < 1. We write θ ∈ LT .

The main convergence result is proven in Bhamidi et al. (2011) and extended to the our
model in the following proposition.

PROPOSITION 3 (Convergence rates)

Assume
ψ2(θ(2),X)

n(n−1)
> 0.

1. If θ belongs to the high temperature region, i.e. θ ∈ HT , the chain of networks
generated by the model mixes in order n2 log n.

2. If θ belongs to the low temperature region, i.e. θ ∈ LT then convergence is exponen-
tially slow. This holds for any local dynamics, i.e. a dynamics that updates an o(n)
number of links per period.

Proof. See Bhamidi et al. (2011), Thm. 5 and 6

The intuition for the result is as follows. When the mean-field equation has a unique so-
lution, there is a unique mode: the simulation of the model through local dynamics generates
a Markov chain that concentrates around the mode in quadratic time. However, when the
mean-field equation has multiple solutions, the stationary distribution has multiple modes
and the simulation through a local chain will concentrate around one of the modes. To be
able to switch between modes, the simulation needs to be able to make big steps, so a local
dynamics is unable to escape from one of the modes.40

In summary, sampling with any local sampler is possible for parameters that lie in the
high temperature phase, and convergence is in the order of n2 log n steps; for parameters
belonging the low temperature phase, convergence is exponentially slow and the algorithm
may be infeasible in practice.

23



Figure 3: High temperature and low temperature regions

The figure shows the high (blue) and low (red) temperature regions for the model in equation (26), with
direct utility and reciprocity. Convergence is exponentially slow in the low temperature region, while mixing
is of order n2 log n in the high temperature region. The slow convergence are is negligible for this model.

Let’s consider a simple example, where players receive utility from direct and reciprocated
links only

Ui(g,X) = α
n∑
j=1

gij + β
n∑
j=1

gijgji (26)

Assume α ∈ R and β > 0. The mean-field equation for the model is

µ =
exp [α + βµ]

1 + exp [α + βµ]
(27)

The high and low temperature regions for model (26) are shown in Figure 3, for reason-
able parameter values. The figure shows that the region of exponentially slow convergence
is extremely small: the model has good convergence properties.

The good convergence properties hold for any model with dependencies up to two links.
For example, the model including the indirect links and popularity effects on the utility
function has a mean-field equation similar to (27).41 However, when we introduce additional
components of the utility function the convergence properties deteriorate fast. Consider and
extended model with inclusion of cyclic triads

Ui(g,X) = α
n∑
j=1

gij + β
n∑
j=1

gijgji + δ
n∑
j=1

gij
∑
k 6=j,i

gjkgki (28)

40Mele (2011) proposed a Simulated Tempering algorithm to partially offset this problem.
41See Appendix B for details.
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Figure 4: High temperature and low temperature regions, model with cyclic triads

The figure shows the high (blue) and low (red) temperature regions for the model in equation (28) with
direct utility, reciprocity and cyclic triads. Convergence is exponentially slow in the low temperature region,
while mixing is of order n2 log n in the high temperature region. The are of slow convergence is substantially
large for this model, and estimation may not be feasible.

The mean-field equation for this specification is

µ =
exp [α + βµ+ δµ2]

1 + exp [α + βµ+ δµ2]

and the graph is reported in Figure 4 for several values of α. The low temperature region
covers an extended area of the parameter space, suggesting that estimation of such a model
with the exchange algorithm has convergence problems or may be infeasible.

For the more general mean-field equation (25) the regions look similar to Figure 3.42 In
summary, the original model presented in (1) has good convergence and mixing properties.
Therefore estimation with the approximate exchange algorithm is feasible.43

42Substitute α with the function ψ1 and β with the function ψ2.
43However, when the number of players grows large we may need very long runs of the chains to obtain

accurate estimates. The algorithm for network simulation would need to be modified drastically to accelerate
convergence and update more than o(n) links per iteration. It is possible to use a simulated tempering sampler
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4 Results

The performance of the estimation method is tested using artificial data and friendship net-
works data from Add Health. All the computations with artificial data are performed in
a standard desktop Dell Precision T3500 with 2 Intel Xeon CPUs at 3.47GHZ and 24GB
of RAM.44 All the replication files are available at https://jshare.johnshopkins.edu/

amele1/bayesnet_replic.zip.
The identification of parameters for the linear utility case follows from the theory of

exponential families (Lehman, 1983). Identification is guaranteed as long as the sufficient
statistics t(g,X) are not linearly dependent. The nonlinear case is more complex. Addi-
tional details on the Add Health dataset, identification and practical implementation are in
Appendix B.

4.1 Artificial Data

Ideally, we want to compare the results of the approximate algorithm with the exact algo-
rithm. This is feasible for a special case, where preferences depend only on direct and mutual
links (i.e. excluding friends of friends and popularity effects). For this model, described by
equation (26), we can show that the constant is45

c(θ) =
(
1 + 2eα + e2α+β

)n(n−1)
2

For this model we can compute the exact likelihood and we can therefore perform inference
using the exact metropolis-hastings sampler. We then compare the results of the exact al-
gorithm with the approximate exchange algorithm.

The results of the simulations are shown in Table 1. The data were generated by
parameters (α, β) = (−2.0, 0.5). Notice that the parameters lie in the region of fast con-
vergence. The number of network simulations per each proposed parameter are R = {1000,

as in Mele (2011). An alternative is an adaptive version of the exchange algorithm complemented with larger
proposed steps of the sampler, as proposed in Atchade and Wang (forthcoming).

44Because of the contractual constraints for the use of restricted Add Health data, I have to run the
simulations in a Condor cluster, where the data are stored. The cluster processors are slightly slower than
the desktop used for the artificial data simulations, but the performance is comparable.

45With some algebra

c (θ) =
∑
g

exp

 n∑
i=1

n∑
j=1

gijα+

n∑
i=1

n∑
j=i+1

gijgjiβ

 =
∑
g

exp

 n∑
i=1

n∑
j=i+1

(gij + gji)α+ gijgjiβ


=

∑
g

n∏
i=1

n∏
j=i+1

exp [(gij + gji)α+ gijgjiβ] =

n∏
i=1

n∏
j=i+1

1∑
gij=0

1∑
gji=0

exp [(gij + gji)α+ gijgjiβ]

=

n∏
i=1

n∏
j=i+1

(
e0 + eα + eα + e2α+β

)
=
(
1 + 2eα + e2α+β

)n(n−1)
2
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5000, 10000, 50000, 100000, 1000000, 10000000}. We run each algorithm for S = 10000
parameters iterations, and we use the output to measure the Kolmogorov-Smirnov distance
between the posterior estimated with the exact metropolis sampler p(θ|g,X) and the poste-
rior estimated with the approximated algorithm with R network simulations pR(θ|g,X)

KS (pR(θi|g,X), p(θi|g,X)) = sup
θi∈Θi

∣∣∣∣∫ θi

−∞
pR(θi|g,X)−

∫ θi

−∞
p(θi|g,X)

∣∣∣∣
We also compute the Kullback-Leibler divergence

KL (pR(θi|g,X), p(θi|g,X)) =

∫
Θi

log

[
pR(θi|g,X)

p(θi|g,X)

]
pR(θi|g,X)dθi

The table reports posterior mean, median, standard deviation, Monte Carlo standard er-
rors for the posterior mean (mcse), 95% credibility intervals, Kolmogorov-Smirnov statistics,
Kullback-Leibler divergence and time for computation.

The exact metropolis is reported in the first column of the table. The approximate ex-
change algorithm works very well for small to moderate networks. For a small network with
n = 100 players, a reasonable degree of accuracy can be reached with as low as R = 5000
network simulations per parameter. This is far below the n2 log n = 46052 suggested by the
theoretical convergence result. The latter seems to be a general pattern: for each size of the
network a good level of accuracy is obtained by using less than n2 log n iterations.

If the researcher is interested in a Bayesian point estimate, the number of simulations
required to obtain an accurate estimate of the posterior means is quite small. However, a
small R translates into overestimated variability of the posterior. If the researcher is inter-
ested in fully Bayesian inference, the number of simulations should be high.

Simulations from over-dispersed starting values converge to the same posterior distribu-
tion. Convergence is quite fast to the high density region of the posterior.46 Computations
can be faster if we embed sparse matrix algebra routines in the codes. The results in Table
1 are obtained with codes that do no use sparse matrix algebra, thus representing a worst
case scenario in computational time.

4.2 Add Health data

The National Longitudinal Study of Adolescent Health (Add Health) is a dataset containing
information on a nationally representative sample of US schools. I use data from the first
wave of the survey, collected in 1994 when the 90118 participants were entering grades 7-12.47

Each student responded to an in-school questionnaire, and a subsample of 20745 was given

46This result is common with the class of exchange algorithms. See Caimo and Friel (2010), Atchade and
Wang (forthcoming) for examples.

47More details about the sampling design and the representativeness are contained in Moody (2001) and
the Add Health website http://www.cpc.unc.edu/projects/addhealth/projects/addhealth
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Figure 5: School friendship networks data

white=Whites; blue = African Americans; yellow = Asians; green = Hispanics; red = Others

A. School 28 B. School 58 C. School 77

blue = Males; red = Females

Note: The graphs represent the friendship network of a school extracted from AddHealth. Each dot represents a student, each
arrow is a friend nomination. The colors represent racial groups.

an in-home interview to collect more detailed information about behaviors, characteristics
and health status.

In this paper I use data only from 3 schools to explain how the estimation works.48 I
use schools 28, 58 and 77 from the saturated sample.49 The in-school questionnaire collects
the social network of each participant. Each student was given a school roster and was

48A previous version of the paper contains estimates for a more complex model, with several additional
controls (income, physical appearance, personality) and data from multiple schools, using a parallel imple-
mentation of the approximate exchange algorithm. The estimated models are used to perform counterfactual
analysis and study the effect of desegregation programs in the US.

49The saturated sample is a group of 16 schools for which the Add Health staff was able to collect all
informations. These data have no missing values.
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asked to identify up to five male and five female friends.50 I use the friendship nominations
as proxy for the social network in a school. The resulting network is directed : Paul may
nominate Jim, but this does not necessarily imply that Jim nominates Paul.51 The model
developed in this paper takes this feature of the data into account. The friendship network
of the three schools are shown in Figure 5. School 28 is relatively small, with 150 students,
and a relatively heterogeneous racial composition. School 58 is larger (811 students) and
racially homogeneous. School 77 is a large school with 1664 students and heterogeneous
racial composition.

I estimate a model with 18 parameters for school 28. The results are contained in Table

Table 2: School 28, structural estimates
mean std. dev 5 pctile median 95 pctile

A. Direct Utility (uij)

constant -5.0118 0.2972 -5.5157 -5.0073 -4.5212
same gender 0.2613 0.1842 -0.0371 0.2607 0.5651
same grade 1.0199 0.1933 0.7037 1.0202 1.3401
white-white 0.5694 0.3053 0.0660 0.5653 1.0779
black-black 0.8931 0.3076 0.3931 0.8917 1.4045
hisp-hisp 2.0850 0.5844 1.1295 2.0882 3.0351

B. Mutual Utility (mij)

constant 2.3907 0.6053 1.3846 2.3996 3.3626
same gender 1.3834 0.4720 0.6372 1.3660 2.2014
same grade -0.7662 0.4363 -1.4726 -0.7680 -0.0601
white-white -0.3113 0.5982 -1.2830 -0.3169 0.6750
black-black -0.0791 0.5864 -1.0551 -0.0784 0.8645
hisp-hisp -1.4928 1.1213 -3.3859 -1.4649 0.3130

C. Indirect Utility (vij)

constant -0.3077 0.0797 -0.4410 -0.3067 -0.1780
same gender -0.0653 0.0678 -0.1774 -0.0651 0.0436
same grade 0.3010 0.0544 0.2127 0.3002 0.3903
white-white 0.3478 0.0798 0.2173 0.3486 0.4782
black-black 0.2620 0.0758 0.1375 0.2633 0.3839
hisp-hisp 0.0317 0.3800 -0.6400 0.0625 0.6027

2. I report the posterior mean, standard deviation and 5th, 50th and 95th quantiles. The
marginal posteriors are shown in Figure 6. This specification studies homophily in direct,
mutual and indirect utility.

Panel A of Table 2 shows the estimates for the direct utility component. We have evidence
of homophily for race, gender and grade. The marginal posteriors should be interpreted as
marginal utilities. For example, the variable white-white, indicates the marginal utility of a
white student forming a link to a white student, other things being equal.

The estimates for mutual utility in Panel B show that a reciprocated link provides positive

50One can think that this limit could bias the friendship data, but only 3% of the students nominated 10
friends (Moody, 2001). Moreover, the estimation routine could be easily extended to deal with missing links,
as reported in Appendix C.

51Some authors do not take into account this feature of the data and they recode the friendships as mutual:
if a student nominates another one, the opposite nomination is also assumed.
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utility. This is reinforced if the reciprocation comes from a student of the same gender.
However, a mutual link from a person of the same grade provides negative marginal utility
on average. The race coefficients are negative, but their marginal posterior is highly variable.

The estimates for indirect and popularity effects show that students prefer friendships
with individuals with fewer friends, probably for a congestion effect. There is evidence of
homophily for grade and race, but not for hispanics.

The estimates for school 58 are contained in Table 3. The school contains 98% white

Figure 6: Posterior Distribution, School 28

Estimated posterior distribution for the full structural model. Each graph shows the histogram of the
simulation output. The vertical red line indicates the posterior mean, while the red dotted line is the prior
distribution. The estimates are obtained with a sample of 50000 parameter simulations and 50000 network
simulations for each proposed parameter. I use simulations from 5 over-dispersed chains, discarding the first
10000 iterations for burn-in.

students. In this very parsimonious specification, I study the differential homophily for
gender (the omitted category is female-female). Males and females have the same propensity
to form links to same gender students. However, guys have a slightly higher propensity to
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form links to girls than girls have to form links to guys. Reciprocated links increase utility,
but there is congestion in indirect links.

The last set of estimates, for school 77, is shown in Table 4. This is a large school

Table 3: School 58, structural estimates

mean std. dev 5 pctile median 95 pctile
constant -6.0332 0.1795 -6.3338 -6.0340 -5.7381
male-male -0.0426 0.1489 -0.2867 -0.0438 0.1983
male-female -0.3216 0.1658 -0.5985 -0.3217 -0.0438
female-male -0.4749 0.1740 -0.7665 -0.4762 -0.1909
same grade 1.4308 0.1297 1.2157 1.4289 1.6454
mutual 4.8094 0.1353 4.5902 4.8108 5.0283
indirect -0.0180 0.0151 -0.0426 -0.0176 0.0067

with 1664 students and a very heterogeneous population. There is evidence of homophily
for gender, grade and race (excluding whites). Reciprocated links and indirect links increase
utility levels.

These results confirm previous evidence on homophily using the same data.52 In terms

Table 4: School 77, structural estimates

mean std. dev 5 pctile median 95 pctile
constant -8.1694 0.2892 -8.6482 -8.1705 -7.7038
same gender 0.4405 0.2164 0.0907 0.4361 0.8028
same grade 1.1318 0.2303 0.7560 1.1316 1.5135
white-white 0.5291 1.1812 -1.6677 0.6548 2.2397
black-black 0.8497 0.3424 0.2732 0.8539 1.4005
hisp-hisp 0.7372 0.2485 0.3244 0.7426 1.1345
mutual 5.5428 0.2667 5.0978 5.5438 5.9817
indirect 0.0356 0.0331 -0.0183 0.0354 0.0894

of computational feasibility, the estimates for school 58 were obtained with 50000 parameter
simulations for each of 5 over-dispersed chains. I run the network simulations for 100000
steps for each proposed parameter. The over-dispersed starting values were obtained from a
burn-in of 100000 simulations, used also to optimize the proposal distribution. The estimates
in Table 3 are obtained in less than 15 hours of CPU time. The same number of simulations
is used for Table 4, with a CPU time of about 100 hours.53

52See Currarini et al. (2010) and Moody (2001) for example.
53A reason for this drastic increase in the computational time is that the codes do not use any sparse

matrix algebra routines, which would speed up computations especially for these large networks. Therefore,
these computation times are upper bounds and can be improved.
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5 Conclusions

This paper develops and estimates a dynamic model of strategic network formation with
heterogeneous agents. The paper contributes to the economic literature on network forma-
tion in two ways. First, while most strategic models have multiple equilibria, I establish the
existence of a unique stationary equilibrium, which characterizes the likelihood of observing
a specific network structure in the data. As a consequence, I can estimate and identify
the structural parameters using only one observation of the network at a single point in
time. Second, I propose a Bayesian Markov Chain Monte Carlo algorithm that drastically
reduces the computational burden for estimating the posterior distribution. In this model,
the likelihood function cannot be evaluated or approximated with precision: a state-of-the-
art supercomputer would take several years to evaluate the likelihood once. To overcome
this problem, my algorithm generates samples from the posterior distribution and avoids the
evaluation of the likelihood. First, a new parameter is proposed according to a Metropolis-
Hastings step. Second, another Metropolis-Hastings sampler simulates a network from the
stationary distribution of model.

I prove that the algorithm converges to the correct posterior distribution. However, the
network simulation step is computationally very demanding and may require an infeasible
number of simulations to mix well.54 Using mean-field approximations for the exponential
family, I show that the network simulation algorithm convergence is of order n2 log(n) for
most parameter vectors. In other words, the area of exponentially slow mixing is negligible.
The reason is that the model incorporates link dependencies up to two links, which satisfy
the conditions for fast mixing.55

The estimation strategy is evaluated using artificial data and friendship network data
from the Add Health dataset. The performance of the algorithm is good and convergence
to the posterior distribution is shown to be fast for practical implementations. The models
estimated using Add Health data confirm the presence of homophily in US high schools.

The model can be easily extended to incorporate unobserved heterogeneity in individual
quality and preferences. The Bayesian estimation strategy can be adapted to estimate mod-
els with missing links, using data augmentation techniques. These improvements come with
a substantial increase in the computational burden, but also provide a more realistic model.
Both these extensions are reviewed and explained in Appendix C.

The methodology introduced in this work can be used in different settings. Models of
social interactions with sequential moves as in Nakajima (2007) and Badev (2013) share the
same simple equilibrium characterization presented in this work. In these models individ-
uals interact in a network and their actions are optimally chosen given the action of their
neighbors. The estimation techniques developed here are easily adapted to these settings.56

54See Bhamidi et al. (2011) and Diaconis and Chatterjee (2011) for more detail.
55However, if the model were to be extended to include higher order dependencies, the region of expo-

nentially slow mixing would be larger and the estimation could become computationally infeasible for some
specifications.

56In principle, several models that admit a characterization as potential games could be estimated using
the algorithm proposed in this paper.
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The methodology can be applied to the class of autologistic models in spatial econo-
metrics.57 The latter are models for spatial binary data that explicitly model the spatial
dependence among variables. The likelihood of these models has the same exponential form
with normalizing constant derived in this paper, but their estimation has relied on approx-
imate methods: Maximum Pseudolikelihood (Besag, 1974) or Markov Chain Monte Carlo
Maximum Likelihood (Geyer and Thompson, 1992). My estimation strategy provides a valid
alternative from a Bayesian perspective.
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A Proofs

Proof of Proposition 1
The potential is a functionQ from the space of actions to the real line such thatQ (gij, g−ij, X)−
Q
(
g′ij, g−ij, X

)
= Ui (gij, g−ij, X)−Ui

(
g′ij, g−ij, X

)
, for any ij.58 A simple computation shows

58 For more details and definitions see Monderer and Shapley (1996).
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that, for any ij

Q (gij = 1, g−ij, X)−Q (gij = 0, g−ij, X) = uij + gjimij +
n∑
k=1
k 6=i,j

gjkvik +
n∑
k=1
k 6=i,j

gkivkj

= Ui (gij = 1, g−ij, X)− Ui (gij = 0, g−ij, X)

therefore Q is the potential of the network formation game.

Proof of Proposition 2
The proof consists of showing that Q (g,X) can be written in the form θ′t (g,X). Consider
the first part of the potential

∑
i

∑
j

gijuij =
∑
i

∑
j

gij

P∑
p=1

θupHup (Xi, Xj)

=
P∑
p=1

θup
∑
i

∑
j

gijHup (Xi, Xj)

≡
P∑
p=1

θuptup (g,X)

= θ′utu (g,X)

where tup (g,X) ≡
∑
i

∑
j

gijHup (Xi, Xj), θu = (θu1, ..., θuP )′ and tu (g,X) = (tu1 (g,X) , ..., tuP (g,X))′.

Analogously define θm = (θm1, θm2, ..., θmL)′ and tm (g,X) = (tm1 (g,X) , tm2 (g,X) , ..., tmL (g,X))′

and θv = (θv1, θv2, ..., θvS)′ and tv (g,X) = (tv1 (g,X) , tv2 (g,X) , ..., tvS (g,X))′. It follows
that

∑
i

∑
j>i

gijgjimij =
∑
i

∑
j>i

gijgji

L∑
l=1

θmlHml (Xi, Xj)

=
L∑
l=1

θml
∑
i

∑
j>i

gijgjiHml (Xi, Xj)

=
L∑
l=1

θmltml (g,X)

= θ′mtm (g,X)
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and

∑
i

∑
j

gij
∑
k 6=i,j

gjkvij =
∑
i

∑
j

gij
∑
k 6=i,j

gjk

S∑
s=1

θvsHvs (Xi, Xk)

=
S∑
s=1

θvs
∑
i

∑
j

gij
∑
k 6=i,j

gjkHvs (Xi, Xk)

=
S∑
s=1

θvstvs (g,X)

= θ′vtv (g,X)

ThereforeQ (g,X) can be written in the form θ′t (g,X), where θ = (θu, θm, θv)
′ and t (g,X) =

[tu (g,X) , tm (g,X) , tv (g,X)]′

Q (g,X) = θ′utu (g,X) + θ′mtm (g,X) + θ′vtv (g,X)

= θ′t (g,X)

and the stationary distribution is

π (g,X) =
exp [θ′t (g,X)]∑

ω∈G
exp [θ′t (ω,X)]

.

Model without preference shocks: characterization of Nash networks
It is helpful to consider a special case of the model, in which there are no preference

shocks: the characterization of equilibria and long run behavior for such model provides
intuition about the dynamic properties of the full structural model.
Let N (g) be the set of networks that differ from g by only one element of the matrix, i.e.

N (g) ≡ {g′ : g′ = (g′ij, g−ij), for all g′ij 6= gij, for all i, j ∈ I}. (29)

A Nash network is defined as a network in which any player has no profitable deviations from
his current linking strategy, when randomly selected from the population. The following
results characterize the set of the pure-strategy Nash equilibria and the long run behavior
of the model with no shocks.

PROPOSITION 4 (Model without Shocks: Equilibria and Long Run)
Consider the model without idiosyncratic preference shocks. Under Assumptions 1 and 2:

1. There exists at least one pure-strategy Nash equilibrium network
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2. The set NE(G, X, U) of all pure-strategy Nash equilibria of the network formation game
is completely characterized by the local maxima of the potential function.

NE(G, X, U) =

{
g∗ : g∗ = arg max

g∈N (g∗)
Q (g,X)

}
(30)

3. Any pure-strategy Nash equilibrium is an absorbing state.

4. As t→∞, the network converges to one of the Nash networks with probability 1.

Proof. 1) The existence of Nash equilibria follows directly from the fact that the network
formation game is a potential game with finite strategy space. (see Monderer and Shapley
(1996) for details)
2) The set of Nash equilibria is defined as the set of g∗ such that, for every i and for every
gij 6= g∗ij

Ui
(
g∗ij, g

∗
−ij, X

)
≥ Ui

(
gij, g

∗
−ij, X

)
Therefore, since Q is a potential function, for every gij 6= g∗ij

Q
(
g∗ij, g

∗
−ij, X

)
≥ Q

(
gij, g

∗
−ij, X

)
Therefore g∗ is a maximizer of Q. The converse is easily checked by the same reasoning.
3) Suppose gt = g∗. Since this is a Nash equilibrium, no player will be willing to change
her linking decision when her turn to play comes. Therefore, once the chain reaches a Nash
equilibrium, it cannot escape from that state.
4) The probability that the potential will increase from t to t+ 1 is

Pr
[
Q
(
gt+1, X

)
≥ Q

(
gt, X

)]
=

=
∑
i

∑
j

Pr
(
mt+1 = ij

)
Pr
[
Ui
(
gt+1
ij , gt−ij, X

)
≥ Ui

(
gtij, g

t
−ij, X

)∣∣mt+1 = ij
]︸ ︷︷ ︸

=1 because agents play Best Response, conditioning on mt+1

=
∑
i

∑
j

ρij = 1.

By part 3) of the proposition, a Nash network is an absorbing state of the chain. Therefore
any probability distribution that puts probability 1 on a Nash network is a stationary distri-
bution. For any initial network, the chain will converge to one of the stationary distributions.
It follows that in the long run the model will be in a Nash network, i.e. for any g0 ∈ G

lim
t→∞

Pr
[
gt ∈ NE

∣∣ g0
]

= 1.
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Proof of Theorem 1
1. The sequence of networks [g0, g1, ...] generated by the network formation game is a markov
chain. Inspection of the transition probability proves that the chain is irreducible and ape-
riodic, therefore it is ergodic. The existence of a unique stationary distribution then follows
from the ergodic theorem (see Gelman et al. (1996) for details).
2. A sufficient condition for stationarity is the detailed balance condition. In our case this
requires

Pgg′πg = Pg′gπg′ (31)

where

Pgg′ = Pr
(
gt+1 = g′

∣∣ gt = g
)

πg = π
(
gt = g

)
Notice that the transition from g to g′ is possible if these networks differ by only one element
gij. Otherwise the transition probability is zero and the detailed balance condition is satisfied.
Let’s consider the nonzero probability transitions, with g = (1, g−ij) and g′ = (0, g−ij). Define
∆Q ≡ Q (1, g−ij, X)−Q (0, g−ij, X).

Pgg′πg = Pr
(
mt = ij

)
Pr (gij = 0| g−ij)

exp [Q (1, g−ij, X)]∑
ω∈G

exp [Q (ω,X)]

= ρ (g−ij, Xi, Xj)×
1

1 + exp [∆Q]
× exp [Q (1, g−ij, X) +Q (0, g−ij, X)−Q (0, g−ij, X)]∑

ω∈G
exp [Q (ω,X)]

= ρ (g−ij, Xi, Xj)×
1

1 + exp [∆Q]
× exp [Q (1, g−ij, X)−Q (0, g−ij, X)] exp [Q (0, g−ij, X)]∑

ω∈G
exp [Q (ω,X)]

= ρ (g−ij, Xi, Xj)
exp [∆Q]

1 + exp [∆Q]

exp [Q (0, g−ij, X)]∑
ω∈G

exp [Q (ω,X)]

= Pr
(
mt = ij

)
Pr (gij = 1| g−ij)

exp [Q (0, g−ij, X)]∑
ω∈G

exp [Q (ω,X)]

= Pg′gπg′

So the distribution (10) satisfies the detailed balance condition. Therefore it is a stationary
distribution for the network formation model. From part 1) of the proposition, we know that
the process is ergodic and it has a unique stationary distribution. Therefore π (g,X) is also
the unique stationary distribution.
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B Computational Details

B.1 Network Simulation

The algorithm used to simulate the network (ALGORITHM 1) produces samples from
the stationary equilibrium of the model.

1. The network simulation algorithm satisfies the detailed balance condition for the sta-
tionary distribution 10. Indeed for any given θ

Pr (g′|g,X, θ)π (g,X, θ) = qg (g′|g) min

{
1,

exp [Q (g′, X, θ)]

exp [Q (g,X, θ)]

qg (g|g′)
qg (g′|g)

}
exp [Q (g,X, θ)]

c (G, X, θ)

= min

{
qg (g′|g)

exp [Q (g,X, θ)]

c (G, X, θ)
,
exp [Q (g′, X, θ)]

c (G, X, θ)
qg (g|g′)

}
= qg (g|g′) min

{
qg (g′|g)

qg (g|g′)
exp [Q (g,X, θ)]

c (G, X, θ)
,
exp [Q (g′, X, θ)]

c (G, X, θ)

}
= qg (g|g′) min

{
qg (g′|g)

qg (g|g′)
exp [Q (g,X, θ)]

exp [Q (g′, X, θ)]
, 1

}
exp [Q (g′, X, θ)]

c (G, X, θ)
= Pr (g|g′, X, θ) π (g′, X, θ)

This concludes the proof.

2. The algorithm generates a Markov Chain of network with finite state space. The chain
is irreducible and aperiodic and therefore it is uniformly ergodic (see Theorem 4.9,
page 52 in Levin et al. (2008)).

3. The bound to the convergence rate used in the text was derived by Diaconis and
Stroock (1991), for reversible finite chains.

The algorithm has a very useful property that can be exploited in the posterior simulation to
reduce the computational burden. Adapting the suggestion in Liang (2010), define P(R)

θ′ (g′|g)
as the transition probability of a Markov chain that generates g′ with R Metropolis-Hastings
updates of the network simulation algorithm, starting at the observed network g and using
the proposed parameter θ′. Then,

P(R)
θ′ (g′|g) = Pθ′(g1|g)Pθ′(g2|g1) · · · Pθ′(g′|gR−1), (32)

where Pθ′(gj|gi) = qg(g
j|gi)αmh(gi, gj) is the transition probability of the network simulation

algorithm above. Since the Metropolis-Hastings algorithm satisfies the detailed balance
condition, we can prove the following
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LEMMA 1 Simulate a network g′ from the stationary distribution π (·, X, θ′) using a Metropolis-
Hastings algorithm starting at the network g observed in the data. Then

P(R)
θ′ (g|g′)
P(R)
θ′ (g′|g)

=
exp [Q(g,X, θ′)]

exp [Q(g′, X, θ′)]
(33)

for all R, g, g′ ∈ G and for any θ′ ∈ Θ.

Proof. Let P(R)
θ′ (g′|g) be defined as in (32). This is the transition probability of the chain

that generates g′ with R Metropolis-Hastings updates, starting at the observed network g
and using the proposed parameter θ′. Notice that the Metropolis-Hastings algorithm satisfies
the detailed balance for π (g,X, θ′), therefore we have

P(R)
θ′ (g|g′)π (g′, X, θ′) = Pθ′(gR−1|g′)Pθ′(gR−2|gR−1) · · · Pθ′(g|g1)π (g′, X, θ′)

= Pθ′(g1|g)Pθ′(g2|g1) · · · Pθ′(g′|gR−1)π (g,X, θ′)

= P(R)
θ′ (g′|g)π (g,X, θ′)

It follows that

P(R)
θ′ (g|g′)
P(R)
θ′ (g′|g)

=
π (g,X, θ′)

π (g′, X, θ′)

=
exp [Q(g,X, θ′)]

exp [Q(g′, X, θ′)]

c (G, X, θ′)
c (G, X, θ′)

=
exp [Q(g,X, θ′)]

exp [Q(g′, X, θ′)]
.

This concludes the proof.

One should notice that as long as the algorithm is started from the network g observed in
the data (which is assumed to be a draw from the stationary equilibrium of the model), the
equality in (33) is satisfied for any R.

The approximate exchange algorithm presented in this paper removes the requirement
of exact sampling by exploiting the property of the stationary equilibrium characterization,
described in Lemma 1.

B.2 Posterior Simulation

In this section I provide the technical details for the algorithm proposed in the empirical
part of the paper. The first set of results show that the exchange algorithm generate (ap-
proximate) samples from the posterior distribution (13).

The original exchange algorithm developed in Murray et al. (2006) is slightly different
from the one used here. The main modification is in Step 2: the original algorithm requires
an exact sample from the stationary equilibrium of the model.
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ALGORITHM 3 (EXACT EXCHANGE ALGORITHM)
Start at current parameter θt = θ and network data g.

1. Propose a new parameter vector θ′

θ′ ∼ qθ(·|θ) (34)

2. Draw an exact sample network g′ from the likelihood

g′ ∼ π (·|X, θ′) (35)

3. Compute the acceptance ratio

αex (θ, θ′, g′, g) = min

{
1,

exp [Q(g′, X, θ)]

exp [Q(g,X, θ)]

p (θ′)

p (θ)

qθ (θ|θ′)
qθ (θ′|θ)

exp [Q(g,X, θ′)]

exp [Q(g′, X, θ′)]

c(θ)c(θ′)

c(θ)c(θ′)

}
= min

{
1,

exp [Q(g′, X, θ)]

exp [Q(g,X, θ)]

p (θ′)

p (θ)

qθ (θ|θ′)
qθ (θ′|θ)

exp [Q(g,X, θ′)]

exp [Q(g′, X, θ′)]

}
(36)

4. Update the parameter according to

θt+1 =

{
θ′ with prob. αex (θ, θ′, g′, g)
θ with prob. 1− αex (θ, θ′, g′, g)

(37)

The difference between this algorithm and the approximate one is in step 2. The exact
and approximate algorithms use the same acceptance ratio αex (θ, θ′, g′, g), a consequence of
LEMMA 1. Indeed the acceptance ratio for the approximate algorithm is

α̃ex (θ, θ′, g′, g) = min

{
1,

exp [Q(g′, X, θ)]

exp [Q(g,X, θ)]

p (θ′)

p (θ)

qθ (θ|θ′)
qθ (θ′|θ)

P(R)
θ′ (g|g′)
P(R)
θ′ (g′|g)

}
(38)

= min

{
1,

exp [Q(g′, X, θ)]

exp [Q(g,X, θ)]

p (θ′)

p (θ)

qθ (θ|θ′)
qθ (θ′|θ)

exp [Q(g,X, θ′)]

exp [Q(g′, X, θ′)]

}
(39)

= αex (θ, θ′, g′, g) (40)

This result implies that to prove the convergence of the approximate algorithm to the exact
algorithm, there is no need to prove convergence of α̃ex (θ, θ′, g′, g) to αex (θ, θ′, g′, g). The
convergence of step 2 of the algorithm is sufficient.
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B.2.1 Preliminary Lemmas for THEOREM 2

The convergence of the approximate exchange algorithm to the correct posterior distribution
is proven in 4 steps.

1. First we prove that the exact exchange algorithm converges to the correct posterior
(LEMMA 2)

2. Second, we prove that the approximate algorithm has a stationary distribution and it
is ergodic (LEMMA 3, similar to the one in Liang 2010)

3. Third, we prove that the transition kernel of the approximate and exact algorithms
are arbitrarily close for a large enough number of network simulations (LEMMA 4)

4. Fourth, we combine previous results to prove that the approximate algorithm converges
to the correct posterior

A similar proof strategy is contained in Liang et al. (2010) and Andrieu and Roberts (2009).

Let Q (dϑ|θ) = qθ (ϑ|θ) ν (dϑ). The transition kernel of the exact exchange algorithm can be
written as

P (θ, dϑ) =

[∑
g′∈G

π (g′, ϑ)αex (θ, ϑ, g′, g)

]
Q (θ, dϑ)

+ δθ (dϑ)

{
1−

∫
Θ

[∑
g′∈G

π (g′, ϑ)αex (θ, ϑ, g′, g)

]
Q (θ, dϑ)

}

and the transition kernel of the approximate exchange algorithm can be written as

P̃R (θ, dϑ) =

[∑
g′∈G

P(R)
ϑ (g′|g)αex (θ, ϑ, g′, g)

]
Q (θ, dϑ)

+ δθ (dϑ)

{
1−

∫
Θ

[∑
g′∈G

P(R)
ϑ (g′|g)αex (θ, ϑ, g′, g)

]
Q (θ, dϑ)

}

Let η (θ) be the average rejection probability for the approximate algorithm, i.e.

η (θ) := 1−
∫

Θ

[∑
g′∈G

P(R)
ϑ (g′|g)αex (θ, ϑ, g′, g)

]
Q (θ, dϑ) (41)

The next lemma proves that the transition kernel satisfies the detailed balance condition for
the posterior distribution. For any pair of parameters (θ, ϑ) ∈ Θ we have

P [θ, ϑ|g,X] p (θ|g,X) = Pr [θ|ϑ, g,X] p (ϑ|g,X) (42)
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The detailed balance condition is sufficient condition for the Markov chain generated by
the algorithm to have stationary distribution the posterior (13) (for details see Robert and
Casella (2005) or Gelman et al. (2003)).

LEMMA 2 The exchange algorithm produces a Markov chain with invariant distribution
(13).

Proof. Define Z ≡
∫

Θ
π (g|X, θ) p (θ) dθ. In the algorithm the probability Pr [ϑ|θ, g,X]

of transition to θj, given the current parameter θ and the observed data (g,X), can be
computed as

Pr [ϑ|θ, g,X] = qθ (ϑ|θ) exp [Q(g′, X, ϑ)]

c(G, X, ϑ)
αex (θ, ϑ, g′, g) . (43)

This is the probability qθ (ϑ|θ) of proposing ϑ times the probability of generating the new

network g′ from the model’s stationary distribution, exp[Q(g′,X,ϑ)]
c(G,X,ϑ)

and accepting the proposed

parameter αex (θ, ϑ, g′, g). Therefore the left-hand side of (42) can be written as

Pr [ϑ|θ, g,X] p (θ|g,X) = qθ (ϑ|θ) exp [Q(g′, X, ϑ)]

c(G, X, ϑ)
αex (θ, ϑ, g′, g) p (θ|g,X)

= qθ (ϑ|θ) exp [Q(g′, X, ϑ)]

c(G, X, ϑ)
αex (θ, ϑ, g′, g)

exp[Q(g,X,θ)]
c(G,X,θ) p (θ)

Z

= qθ (ϑ|θ) exp [Q(g′, X, ϑ)]

c(G, X, ϑ)

× min

{
1,

exp [Q(g′, X, θ)]

exp [Q(g,X, θ)]

p (ϑ)

p (θ)

qθ (θ|ϑ)

qθ (ϑ|θ)
exp [Q(g,X, ϑ)]

exp [Q(g′, X, ϑ)]

}
×

exp[Q(g,X,θ)]
c(G,X,θ) p (θ)

Z

= min

{
qθ (ϑ|θ) exp [Q(g′, X, ϑ)]

c(G, X, ϑ)

exp [Q(g,X, θ)]

c(G, X, θ)
p (θ)

Z
, qθ (θ|ϑ)

exp [Q(g′, X, θ]

c(G, X, θ)
exp [Q(g,X, ϑ)]

c(G, X, ϑ)

p (ϑ)

Z

}

= qθ (θ|ϑ)
exp [Q(g′, X, θ)]

c(G, X, θ)
exp [Q(g,X, ϑ)]

c(G, X, ϑ)

p (ϑ)

Z
×

× min

{
1,

exp [Q(g′, X, ϑ)]

exp [Q(g,X, ϑ)]

p (θ)

p (ϑ)

qθ (ϑ|θ)
qθ (θ|ϑ)

exp [Q(g,X, θ)]

exp [Q(g′, X, θ)]

}
= qθ (θ|ϑ)

exp [Q(g′, X, θ)]

c(G, X, θ)
α(ϑ, θ, g′, g)

exp [Q(g,X, ϑ)]

c(G, X, ϑ)

p (ϑ)

Z

= qθ (θ|ϑ)
exp [Q(g′, X, θ)]

c(G, X, θ)
α(ϑ, θ, g′, g)p (ϑ|g,X)

= Pr [θ|ϑ, g,X] p (ϑ|g,X)

The latter step proves the detailed balance for a generic network g′. Since the condition is
satisfied for any network g′, detailed balance follows from summing over all possible networks.
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LEMMA 3 (The approximate algorithm is ergodic)
Assume the exact exchange algorithm is ergodic and that for any ϑ ∈ Θ

P(R)
ϑ (g′|g)

π (g′, ϑ)
> 0 for any g′ ∈ G (44)

Then for any R ∈ N such that for any θ ∈ Θ , ρ(θ) > 0, the transition kernel of the

approximate algorithm P̃R is also irreducible and aperiodic, and there exists a stationary
distribution p̃ (θ) such that

lim
s→∞

∥∥∥P̃ (s)
R (θ0, ·)− p̃ (θ)

∥∥∥
TV

= 0 (45)

Proof. The exact algorithm with transition kernel P is an irreducible and aperiodic Markov
chain. To prove that the approximate algorithm with transition kernel P̃R defines an ergodic
Markov chain, it is sufficient to prove that the set of accessible states of P are also included
in those of P̃R. The proof proceeds by induction.
Formally, we need to show that for any s ∈ N, θ ∈ Θ and A ∈ B (Θ) such that P (s) (θ, A) > 0,

implies P̃
(s)
R (θ, A) > 0.

Notice that for any θ ∈ Θ and A ∈ B (Θ),

P̃R (θ, A) =

∫
A

[∑
g′∈G

P(R)
ϑ (g′|g)αex (θ, ϑ, g′, g)

]
qθ (ϑ|θ) dϑ+ I (θ ∈ A) η (θ)

≥
∫
A

[∑
g′∈G

min

{
1,
P(R)
ϑ (g′|g)

π (g′, ϑ)

}
π (g′, ϑ)αex (θ, ϑ, g′, g)

]
qθ (ϑ|θ) dϑ+ I (θ ∈ A) η (θ) > 0

where the last inequality comes from
P(R)
ϑ (g′|g)
π(g′,ϑ)

> 0 for any g′ ∈ G and ϑ ∈ Θ.
This proves that the statement is true when s = 1. By induction we assume that it is true
up to s = n ≥ 1 and for some θ ∈ Θ chose A ∈ B (Θ) such that P (n+1) (θ, A) > 0 and assume
that ∫

Θ

P̃
(n)
R (θ, dϑ) P̃R (ϑ,A) = 0

This implies that P̃R (ϑ,A) = 0, P̃
(n)
R (θ, ·)-a.s.; by the induction assumption at s = 1 it

follows that P (ϑ,A) = 0, P̃
(n)
R (θ, ·)-a.s.

From this and the induction assumption at s = n, P (ϑ,A) = 0, P (n) (θ, ·)-a.s. (assume not,

then P (ϑ,A) > 0, P (n) (θ, ·)-a.s. which by induction would imply P̃R (ϑ,A) > 0, which is a
contradiction). The latter step contradicts P (n+1) (θ, A) > 0 and the result follows.

The next step consists of proving that the transition kernel of the approximate algorithm
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P̃R (θ, ϑ) and the exact algorithm P (θ, ϑ) are arbitrarily close for a large enough number
of network simulations R. Formally we prove a statement which is equivalent to proving
convergence in total variation norm.59

LEMMA 4 (Convergence of the exact and approximate transition kernels)
Let ε ∈ (0, 1]. There exists a number of simulations R0 ∈ N such that for any function
φ : Θ→ [−1, 1] and any R > R0 , ∣∣∣P̃Rφ(θ)− Pφ(θ)

∣∣∣ < 2ε (46)

Proof. The transition of the exchange algorithm is

P (φ(θ), φ(ϑ)) =

∫
Θ

φ(ϑ)

[∑
g′∈G

π (g′, ϑ)αex (θ, ϑ, g′, g)

]
qθ (ϑ|θ) dϑ

+ φ(θ)

[
1−

∫
Θ

[∑
g′∈G

π (g′, ϑ)αex (θ, ϑ, g′, g)

]
qθ (ϑ|θ) dϑ

]
while the transition kernel for the approximate algorithm is

P̃R (φ(θ), φ(ϑ)) =

∫
Θ

φ(ϑ)

[∑
g′∈G

P(R)
ϑ (g′|g)αex (θ, ϑ, g′, g)

]
qθ (ϑ|θ) dϑ

+ φ(θ)

[
1−

∫
Θ

[∑
g′∈G

P(R)
ϑ (g′|g)αex (θ, ϑ, g′, g)

]
qθ (ϑ|θ) dϑ

]
and therefore the difference is

S = P (φ(θ), φ(ϑ))− P̃R (φ(θ), φ(ϑ))

=

∫
Θ

φ(ϑ)

[∑
g′∈G

[
π (g′, ϑ)− P(R)

ϑ (g′|g)
]
αex (θ, ϑ, g′, g)

]
qθ (ϑ|θ) dϑ

− φ(θ)

∫
Θ

[∑
g′∈G

[
π (g′, ϑ)− P(R)

ϑ (g′|g)
]
αex (θ, ϑ, g′, g)

]
qθ (ϑ|θ) dϑ

Consider the quantity

S0 =

∫
Θ

[∑
g′∈G

[
π (g′, ϑ)− P(R)

ϑ (g′|g)
]
αex (θ, ϑ, g′, g)

]
qθ (ϑ|θ) dϑ

≤
∫

Θ

[∑
g′∈G

∣∣∣π (g′, ϑ)− P(R)
ϑ (g′|g)

∣∣∣αex (θ, ϑ, g′, g)

]
qθ (ϑ|θ) dϑ

59See Levin et al. (2008), proposition 4.5, page 49.
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and since αex (θ, ϑ, g′, g) ≤ 1 for any (θ, ϑ) ∈ Θ×Θ and (g′, g) ∈ G × G, we have

S0 ≤
∫

Θ

[∑
g′∈G

∣∣∣π (g′, ϑ)− P(R)
ϑ (g′|g)

∣∣∣] qθ (ϑ|θ) dϑ

=

∫
Θ

[
2 sup
g′∈G

∣∣∣π (g′, ϑ)− P(R)
ϑ (g′|g)

∣∣∣] qθ (ϑ|θ) dϑ

The convergence of the network simulation algorithm implies that for any ε > 0, there exists
an R0 (ϑ, ε) ∈ N such that for any R > R0 (ϑ, ε) and for any g ∈ G

2 sup
g′∈G

∣∣∣π (g′, ϑ)− P(R)
ϑ (g′|g)

∣∣∣ ≤ ε

Pick R0 (ε) = maxϑ∈Θ {R0 (ϑ, ε)}. Then for any ε ∈ (0, 1], there is an R0 (ε) ∈ N such that
for any R > R0 (ε) and for any g ∈ G

S0 ≤
∫

Θ

εqθ (ϑ|θ) dϑ = ε

This implies that

|S| ≤ |2S0| = 2ε

(47)

The next theorem is the main result for the convergence. It states that the approximate ex-
change algorithm converges to the correct posterior distribution, provided that the number
of network simulations and parameter samples are big enough.

B.2.2 Proof of THEOREM 2

. Proof. The main idea is to decompose the total variation in two components∥∥∥P̃ (s)
R (θ0, ·)− p (·|g,X)

∥∥∥
TV

=
∥∥∥P̃ (s)

R (θ0, ·)− P (s) (θ0, ·) + P (s) (θ0, ·)− p (·|g,X)
∥∥∥
TV

≤
∥∥∥P̃ (s)

R (θ0, ·)− P (s) (θ0, ·)
∥∥∥
TV

+
∥∥P (s) (θ0, ·)− p (·|g,X)

∥∥
TV

and prove that each component converges. We will use the same idea, but rewrite the total
variation in a more convenient form.60 For any function φ : Θ→ [−1, 1] we have∣∣∣P̃ (s)

R φ (θ0)− p (φ)
∣∣∣ =

∣∣∣P̃ (s)
R φ (θ0)− P (s)φ (θ0) + P (s)φ (θ0)− p (φ)

∣∣∣
≤

∣∣∣P̃ (s)
R φ (θ0)− P (s)φ (θ0)

∣∣∣+
∣∣P (s)φ (θ0)− p (φ)

∣∣
60See Levin et al. (2008), proposition 4.5, page 49.

50



The second component converges because the exact exchange algorithm is ergodic, as stated
in Lemma. For any ε > 0 there is number of simulation steps s(θ0, ε), such that for any
s ≥ s(θ0, ε) ∣∣P (s)φ (θ0)− p (φ)

∣∣ ≤ ε (48)

For the remaining of the proof, I will set s0 := s(θ0, ε). I use the telescoping sum decompo-
sition in Andrieu and Roberts (2009) (page 15, adapted from last formula)

∣∣∣P̃ (s0)
R φ (θ0)− P (s0)φ (θ0)

∣∣∣ =

∣∣∣∣∣
s0−1∑
l=0

[
P (l)P̃

(s0−l)
R φ (θ0)− P (l+1)P̃

(s0−(l+1))
R φ (θ0)

]∣∣∣∣∣
=

∣∣∣∣∣
s0−1∑
l=0

P (l)
(
P̃R − P

)
P̃

(s0−(l+1))
R φ (θ0)

∣∣∣∣∣
Now we can apply s0 times the result of LEMMA 4 (as in Liang et al. (2010) and Andrieu and
Roberts (2009)) to prove that there exists an R0 (θ0, ε) ∈ N such that for any R > R0 (θ0, ε)∣∣∣P̃ (s0)

R φ (θ0)− P (s0)φ (θ0)
∣∣∣ ≤ 2s0ε (49)

this implies ∣∣∣P̃ (s)
R φ (θ0)− p (φ)

∣∣∣ ≤ (2s0 + 1) ε (50)

We conclude the proof by choosing ε = ε/ (2s0 + 1).
This proves that the approximate exchange algorithm is ergodic, therefore the law of

large number holds, and the second part of the theorem is proven.

B.3 Convergence and Feasibility of Network Simulation

The results in Bhamidi et al. (2011) are based on an equation that is derived from a mean-field
variational approximation of the exponential family.61The likelihood for the model developed
in this paper, in the special case of linear utilities, belongs to the exponential family and we
can use a mean-field approximation to derive the corresponding equation for the directed
network case. All the results of Bhamidi et al. (2011) about convergence rates follow with
this simple modification.

61An introduction to variational methods is contained in Wainwright and Jordan (2008) and Bishop (2006).
Variational approximations are a set of deterministic approximation methods that transform the problem of
computing the intractable normalizing constant into a maximization problem that can be solved iteratively.
The method has several advantages with respect to simulation methods based on MCMC: 1) it converges fast
to the final approximation; 2) convergence can be checked with a single scalar, instead of monitoring all the
parameters; 3) the procedure can be understood as minimizing the Kullback-Leibler divergence between the
true distribution and the approximating distribution. The main limitation is that the error of approximation
is fixed and cannot be made smaller by increasing the number of iterations: this is the main difference between
deterministic approximations and Monte Carlo method, where the error can be decreased by increasing the
number of simulations.
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Let’s consider the exponential family distribution of the model, where the sufficient statis-
tics are suitably re-scaled.62 We will introduce some additional notation with respect to the
main text. Let vp denote the number of vertices involved in the sufficient statistics φp(g,X)
and let ep be the number of the edges involved in the sufficient statistics φp(g,X).

π(g,X; θ) =
exp

[∑P
p=1 θp

φp(g,X)

nvp−2

]
c(G, X, θ)

and define tp(g,X) = φp(g,X)

nvp−2 . The likelihood of the model is

π(g,X; θ) =
exp

[
θT t(g,X)

]∑
ω∈G exp [θT t(ω,X)]

(51)

with log-likelihood

`(g,X; θ) = lnπ(g,X; θ) = θT t(g,X)− κ(G, X, θ) (52)

where κ(G, X, θ) is defined as

κ(G, θ) = ln c(G, θ) = ln
∑
ω∈G

exp
[
θT t(ω,X)

]
(53)

The variational approach consists of restating the problem of computing κ(G, X, θ) as a max-
imization problem. A simple application of the Jensen’s inequality provides a lower bound
to the log constant (53). Let q(g,X) be an arbitrary distribution of network configurations.

κ(G, X, θ) = ln
∑
ω∈G

exp
[
θT t(ω,X)

]
(54)

= ln
∑
ω∈G

q(ω,X)
exp

[
θT t(ω,X)

]
q(ω,X)

(55)

≥
∑
ω∈G

q(ω,X) ln

{
exp

[
θT t(ω,X)

]
q(ω,X)

}
(56)

=
∑
ω∈G

q(ω,X)θT t(ω,X)−
∑
ω∈G

q(ω,X) ln q(ω,X) (57)

= θTEq [t(ω,X)] +H(q) (58)

where H(q) = −
∑

ω∈G q(ω,X) ln q(ω,X) is the entropy of distribution q. We can find the
tightest lower bound by maximizing (58) with respect to the distribution q.

κ∗(G, X, θ) = max
q∈Q

{
θTEq [t(ω,X)] +H(q)

}
(59)

62See Bhamidi et al. (2011) and Diaconis and Chatterjee (2011). The re-scaling is done to guarantee that
in the large n limit the sufficient statistics have the same magnitude.
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It can be shown that this problem is equivalent to minimize the Kullback-Leibler divergence
between the likelihood π and the approximating distribution q. However, the unconstrained
optimization problem (59) does not have a closed form solution for most problems. The
optimization is thus performed in a constrained set of distributions q that guarantee explicit
solution. The mean-field approximation consists of constraining the problem in (59) to the
set of completely factorized distributions q. In our context, the latter corresponds to the set
of all Erdos-Renyi graphs with n vertices. Our mean-field approximation will therefore give
us the Erdos-Renyi graph that best approximates the model.

Let µ be the probability that a link is formed in the Erdos-Renyi graph. Then it is easy
to show that the entropy H(q) is

H(q) = −n(n− 1) [µ log µ+ (1− µ) log(1− µ)] (60)

and the expectation can be computed as

Eq
[
θT t(ω,X)

]
= Eq

{
n∑
i=1

n∑
j=1

gijθ
′
uHu (Xi, Xj)

}
+ Eq

{
1

2

n∑
i=1

n∑
j=1

gijgjiθ
′
mHm (Xi, Xj)

}
+

+ Eq

{
n∑
i=1

n∑
j=1

n∑
k 6=i,j

gijgjk
θ′vHv (Xi, Xk)

n

}

=
n∑
i=1

n∑
j=1

Eq(gij)θ′uHu (Xi, Xj) +
1

2

n∑
i=1

n∑
j=1

Eq(gijgji)θ′mHm (Xi, Xj) +

+
n∑
i=1

n∑
j=1

n∑
k 6=i,j

Eq(gijgjk)
θ′vHv (Xi, Xk)

n

=
n∑
i=1

n∑
j=1

µθ′uHu (Xi, Xj) +
1

2

n∑
i=1

n∑
j=1

µ2θ′mHm (Xi, Xj) +
n∑
i=1

n∑
j=1

n∑
k 6=i,j

µ2 θ
′
vHv (Xi, Xk)

n

=
[
µψ1(θ(1), X) + µ2ψ2(θ(2), X)

]
where we have defined the functions ψ1(θ(1), X) and ψ2(θ(2), X) as

ψ1(θ(1), X) ≡
n∑
i=1

n∑
j=1

θ′uHu (Xi, Xj)

ψ2(θ(2), X) ≡ 1

2

n∑
i=1

n∑
j=1

θ′mHm (Xi, Xj) +
n− 2

n

n∑
i=1

n∑
j=1

n∑
k 6=i,j

θ′vHv (Xi, Xk)

The mean field equation is the first order condition of the maximization problem

max
q∈QMF

{
ψ1(θ(1), X)µ+ ψ2(θ(2), X)µ2 − n(n− 1) [µ log µ+ (1− µ) log(1− µ)]

}
(61)
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with first order conditions w.r.t µ

µ =
exp

[
ψ1(θ(1),X)

n(n−1)
+ 2

ψ2(θ(2),X)

n(n−1)
µ
]

1 + exp
[
ψ1(θ(1),X)

n(n−1)
+ 2

ψ2(θ(2),X)

n(n−1)
µ
] (62)

The equation is approximately the probability of transition of the Glauber dynamics
of our model when the network is a draw from an Erdos-Renyi graph with parameter µ.
Bhamidi et al. (2011) use an analogous equation to determine the convergence properties of
the undirected case.

The special case in equation (26) in the text corresponds to ψ1(θ(1), X) = n(n − 1)α

and ψ2(θ(2), X) = n(n − 1)β
2
. If we include the utility from indirect links and popular-

ity (with no explanatory variables X) we have ψ1(θ(1), X) = n(n − 1)α and ψ2(θ(2), X) =

n(n− 1)β
2

+ n−2
n
n(n− 1)γ.

If we include additional components to the utility function the mean-field equation must
be modified accordingly. The general equation is

ϕ(µ, θ) ≡
exp

[∑D
d=1 ed

ψd(θ(d),X)

n(n−1)
µed−1

]
1 + exp

[∑D
d=1 ed

ψd(θ(d),X)

n(n−1)
µed−1

] (63)

where ed is the number of edges involved in the statistics corresponding to function
ψd(θ(d), X). For example, when we include cyclic triads, we have a mean-field equation with
a quadratic term

µ =
exp

[
ψ1(θ(1),X)

n(n−1)
+ 2

ψ2(θ(2),X)

n(n−1)
µ+ 3

ψ3(θ(3),X)

n(n−1)
µ2
]

1 + exp
[
ψ1(θ(1),X)

n(n−1)
+ 2

ψ2(θ(2),X)

n(n−1)
µ+ 3

ψ3(θ(3),X)

n(n−1)
µ2
] (64)

where ψ3(θ(3), X) = n−2
n
n(n− 1) δ

3
.

B.4 Additional convergence simulations

The results contained in Table 1 are obtained from a model with two parameters

Ui(g,X) = θ1

∑
j

gij + θ2

∑
j

gijgji (65)

For this model the normalizing constant can be computed in closed form and therefore it
is possible to compare the performance of the exact metropolis-hastings algorithm with the
approximate exchange algorithm. All the figures reported in this appendix correspond to a
network with n = 1000 players.
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Figure 7: Overdispersed starting values, n = 1000
Convergence of θ1

(a) Exact MH (b) R = 10000 (c) R = 100000 (d) R = 1 mil

Convergence of θ2

(e) Exact MH (f) R = 10000 (g) R = 100000 (h) R = 1 mil

The graphs in Figure 7 show the convergence of the algorithm for overdispersed starting
values. The simulations show fast convergence to the high density region of the posterior.
The number R of network simulations per each proposed parameter does not seem to affect
the convergence. Indeed the exact metropolis and the approximate exchange algorithm show
very similar patterns of convergence. The latter result suggest that in practice it useful to run
the sampler using a low R to find a plausible region for the starting values of the simulation.

The autocorrelation plots are reported in Figure 8. Notice that increasing the number
of network simulations R contributes to the decrease in autocorrelation of the chains. We
obtain good result for a moderate amount of simulations.

The bivariate posterior is shown in Figure 9. The exact metropolis sampler is indicated
by the black solid line, with estimated posterior mean represented by the black triangle.
The approximate algorithm is the red dashed line, with posterior mean shown as a red dot.
While R = 10000 network simulations are not sufficient to obtain an accurate estimate of
the posterior, we obtain a reasonable approximation with R = 100000 simulations, even if
the approximate algorithm has fatter tails. The posterior mean is estimated precisely with
as few as R = 100000 network simulations. However, to obtain an accurate posterior we
need to use at least R = 1000000.

The same patterns are shown in Figure 10 for the marginal posteriors.
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Figure 8: Autocorrelation functions, n = 1000

Autocorrelation plots for the model with utility from direct links and mutual links only, with n = 1000
players. Comparison between the exact metropolis-hastings algorithm and the output from the approximate
exchange algorithm with R =10000, 100000, 1 million and 10 millions.

B.5 Parallel estimation with multiple networks

When data from multiple independent networks are available the estimation routines are
easily adapted. Assume the researcher has data from C networks: let gc and Xc denote the
network matrix and the individual controls for network c, c = 1, ..., C. The aggregate data
are denoted as g = {g1, ..., gc} and X = {X1, ..., Xc}.

Assuming each network is drawn from the stationary equilibrium of the model, each
network has distribution

π (gc, Xc, θ) =
exp [Q (gc, Xc, θ)]∑

ω∈Gc
exp [Q (ωc, Xc, θ)]

(66)
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Figure 9: Level curves for posterior, n = 1000

R=10000 R=100000

R=1 million R=10 millions

Level curves of estimated posteriors for different values of R (red dashed line), compared to the posterior
computes using the exact metropolis-hastings algorithm (black solid). The black triangles is the posterior
mean computed with the exact metropolis, and the red dot is the posterior computed with the approximate
exchange algorithm .

Since each network is independent, the likelihood of the data (g,X) can be written as

π (g,X, θ) =
C∏
c=1

π (gc, Xc, θ) =
C∏
c=1

{
exp [Q (gc, Xc, θ)]

c (Gc, Xc, θ)

}

=
exp

[∑C
c=1Q (gc, Xc, θ)

]
∏C

c=1 c (Gc, Xc, θ)
=

exp
[∑C

c=1Q (gc, Xc, θ)
]

C (G, X, θ)
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Figure 10: Convergence of marginal posteriors, n = 1000

where G =
⋃C
c=1 Gc and X = {X1, ..., XC}. The likelihood for multiple independent networks

is of the same form as the likelihood for one network observation. The structure of this like-
lihood makes parallelization extremely easy: each network can be simulated independently
using the network simulation algorithm; at the end of the simulation we collect the last
network and compute the potential; then we compute the sum of potentials and use it to
compute the probability of update.
Therefore, the algorithm is modified as follows

ALGORITHM 4 (PARALLEL APPROXIMATE EXCHANGE ALGORITHM)
Fix the number of simulations R. Store each network data (gc, Xc) in a different proces-
sor/core. At each iteration t, with current parameter θt = θ and network data g

1. Propose a new parameter θ′ from a distribution qθ(·|θ)

θ′ ∼ qθ(·|θ) (67)

2. For each processor c, start ALGORITHM 1 at the observed network gc, iterating
for R steps using parameter θ′ and collect the last simulated network g′c

g′c ∼ P
(R)
θ′ (g′c|gc) (68)

3. Update the parameter according to

θt+1 =

{
θ′ with prob. αpex (θ, θ′)
θ with prob. 1− αpex (θ, θ′)
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where

αpex(θ, θ
′) = min

1,
exp

[∑C
c=1Q(g′c, Xc, θ)

]
exp

[∑C
c=1Q(gc, Xc, θ)

] p (θ′)

p (θ)

qθ (θ|θ′)
qθ (θ′|θ)

exp
[∑C

c=1Q(gc, Xc, θ
′)
]

exp
[∑C

c=1Q(g′c, Xc, θ′)
]
(69)

The speed of the algorithm depends on the largest network in the data. Since each parameter
update requires the result of each processor simulation there is some idle time, since small
networks are simulated much faster.

B.6 Identification and Practical Implementation

The identification of parameters for the linear utility case follows from the theory of exponen-
tial families (Lehman, 1983). Identification is guaranteed as long as the sufficient statistics
t(g,X) are not linearly dependent. The nonlinear case is more complex and there are no
general conditions that guarantee identification.63 For this reason, I consider estimation of
the model only in the linear case.

The Bayesian framework can help to achieve identification of the parameters in the non-
linear case, by careful use of prior distributions. This is standard practive in the DSGE
estimation literature, where parameters are often ill-identified and prior distributions are
used to produce more precise estimates (Fernandez-Villaverde et al. (2010)). This possibility
is not explored here, and it is left to future research.

The linear case also allows for specifications of the utility function involving network-level
controls, when estimation is performed using multiple networks. This can be achieved by a
specification of the parameters

θp = θp0 +
C∑
c=1

θpcZc (70)

where Zc is a network-level variable. This specification allow network fixed effects and inter-
actions of network controls with individual controls. The estimation methodology presented
above can be applied to this specification without any change. However, estimation of a
model with random coefficients would require significant additional computational effort
(see Appendix C).

As noted above, it is possible to modify the precision of the estimates when there is some
previous information that can be incorporated in the prior. I choose somewhat vague priors
for the parameters, in order to extract most of the information from the data. I assume
independent normal priors

p (θ) = N (0, 3IP ) , (71)

63Geyer (1992) provides some guidance in this matter. He provides conditions that guarantee convergence
of the Monte Carlo Maximum Likelihood estimate to the exact MLE. However, to the best of my knowledge,
there are no sufficient conditions that guarantee identification in this setting.
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where P is the number of parameters.
The proposal distribution for the posterior simulation is

qθ(·|θ) = N (0, δΣ) , (72)

where δ is a scaling factor and Σ is a covariance matrix. I use an adaptive procedure to
determine a suitable Σ. I start the iterations with Σ = λIP , where λ is a vector of stan-
dard deviations. I choose λ so that the sampler accepts at least 20%-25% of the proposed
parameters, as is standard in the literature (Gelman et al., 2003; Robert and Casella, 2005).
I run the chain and monitor convergence using standard methods. Once the chains have
reached approximate convergence, I estimate the covariance matrix of the chains and use it
as an approximate Σ. The scaling factor is δ = 2.382/P as suggested in Gelman et al. (1996).

B.7 The Add Health Data

The National Longitudinal Study of Adolescent Health (Add Health) is a dataset contain-
ing information on a nationally representative sample of US schools. The survey started
in 1994, when the 90118 participants were entering grades 7-12, and the project collected
data in four successive waves.64 Each student responded to an in-school questionnaire, and
a subsample of 20745 was given an in-home interview to collect more detailed information
about behaviors, characteristics and health status. In this paper I use only data from the
saturated sample of Wave I, containing information on 16 schools. Each student in this
sample completed both the in-school and in-home questionnaires, and the researchers made
a significant effort to avoid any missing information on the students.65

The in-school questionnaire collects the social network of each participant. Each student
was given a school roster and was asked to identify up to five male and five female friends.66

I use the friendship nominations as proxy for the social network in a school. The resulting
network is directed : Paul may nominate Jim, but this does not necessarily imply that Jim
nominates Paul.67 The model developed in this paper takes this feature of the data into
account.

A sub-sample of 20745 students was also given an in-home questionnaire, that collected
most of the sensible data. I use data on racial group, grade and gender of individuals. A stu-
dent with a missing value in any of these variables is dropped from the sample. Each student
that declares to be of Hispanic origin is considered Hispanic. The remaining non-Hispanic

64More details about the sampling design and the representativeness are contained in Moody (2001) and
the Add Health website http://www.cpc.unc.edu/projects/addhealth/projects/addhealth

65While this sample contains no missing covariate information for the students, there are several missing
values for the parental variables.

66One can think that this limit could bias the friendship data, but only 3% of the students nominated 10
friends (Moody, 2001). Moreover, the estimation routine could be easily extended to deal with missing links,
as reported in Appendix.

67Some authors do not take into account this feature of the data and they recode the friendships as mutual:
if a student nominates another one, the opposite nomination is also assumed.
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students are assigned to the racial group they declared. Therefore the racial categories are:
White, Black, Asian, Hispanic and Other race. Other race contains Native Americans.

In a previous version of the paper, I also control for homophily in income. I construct
the income of the family using a question from the parent questionnaire.68 In the estimated
models I control for income difference between the students and income levels.

There may be some unobservable variables that affect network formation. For example
some students may be ”cool” and receive more friendship links than others. To partially
control for such effects, I use information from the interviewer remarks about the physi-
cal attractiveness and personality of the student interviewed. I define a dummy variable
”beauty”, which is equal to 1 if the interviewer told that the students was very attractive.
Analogously, the dummy ”personality” is equal to 1 if the interviewer responded that the
personality of the student was very attractive.

Descriptive statistics for the saturated sample are in Table 5. The smallest school has 20
enrolled students while the largest used in estimation has 159 students. There is a certain
amount of variation in the number of links: some schools are more social and form many
links per capita, while other schools have very few friendship nominations. The ratio of boys
to girls is balanced in almost all schools, except school 369, where female students are large
majority.

Panel A summarizes the racial composition. Many schools are almost racially homoge-
neous. School 1, 28, 126 and 175 are more diverse as reflected in the Racial Fragmentation
index. This is an index that measure the degree of heterogeneity of a population. It is
interpreted as the probability that two randomly chosen students in the school belong to
different racial groups.69 An index of 0 indicates that there is only one racial group and the
population is perfectly homogeneous. Higher values of the index represents increasing levels
of racial heterogeneity. Panel B summarizes the grade composition. Most schools offer all
grades from 7th to 12th, with homogeneous population across grades. Several schools only
have lower grades.

Panel C analyzes the racial and gender segregation of each school friendship network.
The level of segregation is measured with the Freeman (1972) segregation index. If there is
no segregation, the number of links among individuals of different groups does not depend
on the group identity. The index measures the difference between the expected and actual
number of links among individuals of different groups. An index of 0 means that the actual
network closely resembles one in which links are formed at random. Higher values indicate

68There are several cases in which the family income is missing. For those observations, I imputed values
drawn from the unconditional income distribution of the community. An alternative but computationally
very costly alternative is to introduce an additional step in the simulation, in which the imputation of missing
incomes is done at each iteration.

69If there are K racial groups and the share of each race is sk, the index is

FRAG = 1−
K∑
k=1

(sk)2 (73)
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more segregation. The index varies between 0 and 1, where the maximum corresponds to a
network in which there are no cross-group links.

Since most schools are racially homogeneous, the measured segregation is zero. Schools
with a racially diverse student population show high level of segregation for each racial group.
On the other hand gender segregation is quite low and homogeneous across schools.

B.8 Freeman Segregation Index

The Freeman segregation index measures the degree of segregation in a population with
two groups (Freeman, 1972). Assume there are two groups, A and B. Let nAB be the total
number of links that individuals of group A form to individuals of group B. Let nBA, nBB
and nAA be analogously defined. The original index developed by Freeman (1972) is defined
as

FSI =
E [nAB] + E [nBA]− (nAB + nBA)

E [nAB] + E [nBA]
(74)

When the link formation does not depend on the identity of individuals, then the links
should be randomly distributed with respect to identity. Therefore, the index measures the
difference between the expected and actual number of links among individuals of different
groups, as a fraction of the expected links. An index of 0 means that the actual network
closely resembles one in which links are formed at random. Higher values indicate more
segregation. In this paper segregation is measured using the index70

SEG = max {0, FSI} (75)

The index varies between 0 and 1, where the maximum corresponds to a network in which
there are no cross-group links.

To complete the derivation of the index, the expected number of cross-group links is
computed as

E [nAB] =
(nAA + nAB) (nAB + nBB)

nAA + nAB + nBA + nBB

E [nBA] =
(nBA + nBB) (nAA + nBA)

nAA + nAB + nBA + nBB

C Extensions

It is possible to incorporate unobserved heterogeneity or random coefficients in the model.
However this would significantly increase the computational cost of estimation. The sim-
plest way to introduce unobserved heterogeneity is to model the preference shock εij as
incorporating individual random effects. In our application of school friendship networks

70The index (74) varies between -1 and 1. However, the interpretation of the index when it assumes
negative values is not clear. Therefore Freeman (1972) suggests to use only when it is nonnegative, to
measure the presence of segregation
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the unobserved quality of the student could be interpreted as ”coolness” or personality or
attractiveness. The decision of the player to form a link is modified as follows

Ui (gij = 1, g−ij, X) + ηi + ηj + νij1 ≥ Ui (gij = 0, g−ij, X) + ηi + νij0 (76)

where νij is an i.i.d. shock with logistic distribution and the vector η = {η1, ..., ηn} is drawn
at time 0 from a known distribution W (η). In this formulation I assume that the players
observe the random effect η but the econometrician does not. Notice that the random effect
of player i cancels out, while the choice of linking j is conditional on the random effect of
player j (which is present only when the link is formed).

Conditioning on the realization of the vector η ∈ Υ, the potential function is modified as
follows

Q (g,X, θ; η) = Q (g,X, θ) +
n∑
i=1

n∑
j=1

gijηj (77)

To compute the unconditional likelihood we need to integrate out the unobserved vector η
to obtain

π (g,X, θ) =

∫
Υ

exp [Q (g,X, θ; η)]∑
ω∈G exp [Q (ω,X, θ; η)]

dW (η) (78)

The integral above can be computed using Monte Carlo techniques, as it is standard in the
IO literature or labor economics. However, the model does not allow standard Monte Carlo,
because of the normalizing constant.

A more feasible strategy is to use data augmentation and Markov Chain Monte Carlo
methods as in the discrete choice literature (Rossi et al. (1996), Athey and Imbens (2007)).

Conditioning on the realization of the unobserved component η, we can use the exchange
algorithm to sample from the posterior distribution of θ. Conditioning on the proposed θ we
can use a metropolis hastings step to sample the unobserved component η.

Given an initial (θ, η) at simulation s, we propose a new θ′ and use the exchange algorithm
to accept or reject the proposal. Given the new value of θs+1, we propose a new vector of
unobserved components η′ and accept using a Metropolis Hastings step. The probability of
η, conditioning on (θ, g,X) is

Pr (η|g,X, θ) =
W (η) π (g,X, θ; η)

π (g,X, θ)
(79)

The Metropolis-Hastings step proceeds by proposing a new η′ from a distribution qη (η′|η),
which is accepted with probability

αη (η, η′, g, θs) =

{
1,
W (η′) π (g,X, θ; η′) qη (η|η′)
W (η) π (g,X, θ; η) qη (η′|η)

}
(80)

Similar ideas apply to random coefficients. One possibility is to estimate a specification
with random coefficient at the network level.

θp = θp0 +
C∑
c=1

θpcZc + ξc (81)
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where Zc is a network-level variable for network c, and ξc ∼ N (0, σξ).
The estimation method is flexible enough to allow for estimation when there are missing

links. The Add Health dataset could raise some concern about missing links, since the
original questionnaire asks students to report up to 5 male and 5 female friends. If a student
has more than 5 male friends, those are missing from the dataset.

Using the Bayesian algorithm provided in this paper one could easily deal with the missing
links. The algorithm cab be modified to include an additional simulation step that generates
the missing links gmis, given the observed network data gobs and the current parameter vector.
Then the algorithm proceeds with the exchange algorithm as before using the augmented
data g = {gmis, gobs}.

The main cost of these extensions is the increased computational burden, which may be
substantial.
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