
A Model equilibrium: proofs

Proof of Proposition 1
The potential is a functionQ from the space of actions to the real line such thatQ (gij, g−ij, X)−
Q

(
g′ij, g−ij, X

)
= Ui (gij, g−ij, X)−Ui

(
g′ij, g−ij, X

)
, for any ij.45 A simple computation shows

that, for any ij

Q (gij = 1, g−ij, X)−Q (gij = 0, g−ij, X) = uij + gjimij +
n∑

k=1
k �=i,j

gjkvik +
n∑

k=1
k �=i,j

gkivkj

= Ui (gij = 1, g−ij, X)− Ui (gij = 0, g−ij, X)

therefore Q is the potential of the network formation game.

Proof of Corollary 1
The proof consists of showing that Q (g,X) can be written in the form θ′t (g,X). Consider
the first part of the potential

∑
i

∑
j

gijuij =
∑
i

∑
j

gij

P∑
p=1

θupHup (Xi, Xj)

=
P∑

p=1

θup
∑
i

∑
j

gijHup (Xi, Xj)

≡
P∑

p=1

θuptup (g,X)

= θ′utu (g,X)

where tup (g,X) ≡∑
i

∑
j

gijHup (Xi, Xj), θu = (θu1, ..., θuP )
′ and tu (g,X) = (tu1 (g,X) , ..., tuP (g,X))′.

Analogously define θm = (θm1, θm2, ..., θmL)
′ and tm (g,X) = (tm1 (g,X) , tm2 (g,X) , ..., tmL (g,X))′

and θv = (θv1, θv2, ..., θvS)
′ and tv (g,X) = (tv1 (g,X) , tv2 (g,X) , ..., tvS (g,X))′. It follows

that

∑
i

∑
j>i

gijgjimij =
∑
i

∑
j>i

gijgji

L∑
l=1

θmlHml (Xi, Xj)

=
L∑
l=1

θml

∑
i

∑
j>i

gijgjiHml (Xi, Xj)

=
L∑
l=1

θmltml (g,X)

= θ′mtm (g,X)

45 For more details and definitions see Monderer and Shapley (1996).
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and

∑
i

∑
j

gij
∑
k �=i,j

gjkvij =
∑
i

∑
j

gij
∑
k �=i,j

gjk

S∑
s=1

θvsHvs (Xi, Xk)

=
S∑

s=1

θvs
∑
i

∑
j

gij
∑
k �=i,j

gjkHvs (Xi, Xk)

=
S∑

s=1

θvstvs (g,X)

= θ′vtv (g,X)

ThereforeQ (g,X) can be written in the form θ′t (g,X), where θ =(θu, θm, θv)
′ and t (g,X) =

[tu (g,X) , tm (g,X) , tv (g,X)]′

Q (g,X) = θ′utu (g,X) + θ′mtm (g,X) + θ′vtv (g,X)

= θ′t (g,X)

and the stationary distribution is

π (g,X) =
exp [θ′t (g,X)]∑

ω∈G
exp [θ′t (ω,X)]

.

Model without preference shocks: characterization of Nash networks
It is helpful to consider a special case of the model, in which there are no preference

shocks: the characterization of equilibria and long run behavior for such model provides
intuition about the dynamic properties of the full structural model.
Let N (g) be the set of networks that differ from g by only one element of the matrix, i.e.

N (g) ≡ {g′ : g′ = (g′ij, g−ij), for all g′ij �= gij, for all i, j ∈ I}. (19)

A Nash network is defined as a network in which any player has no profitable deviations from
his current linking strategy, when randomly selected from the population. The following
results characterize the set of the pure-strategy Nash equilibria and the long run behavior
of the model with no shocks.

PROPOSITION 2 (Model without Shocks: Equilibria and Long Run)
Consider the model without idiosyncratic preference shocks. Under Assumptions 1 and 2:

1. There exists at least one pure-strategy Nash equilibrium network
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2. The set NE(G, X, U) of all pure-strategy Nash equilibria of the network formation game
is completely characterized by the local maxima of the potential function.

NE(G, X, U) =

{
g∗ : g∗ = arg max

g∈N (g∗)
Q (g,X)

}
(20)

3. Any pure-strategy Nash equilibrium is an absorbing state.

4. As t→∞, the network converges to one of the Nash networks with probability 1.

Proof. 1) The existence of Nash equilibria follows directly from the fact that the network
formation game is a potential game with finite strategy space. (see Monderer and Shapley
(1996) for details)
2) The set of Nash equilibria is defined as the set of g∗ such that, for every i and for every
gij �= g∗ij

Ui

(
g∗ij, g

∗
−ij, X

) ≥ Ui

(
gij, g

∗
−ij, X

)
Therefore, since Q is a potential function, for every gij �= g∗ij

Q
(
g∗ij, g

∗
−ij, X

) ≥ Q
(
gij, g

∗
−ij, X

)
Therefore g∗ is a maximizer of Q. The converse is easily checked by the same reasoning.
3) Suppose gt = g∗. Since this is a Nash equilibrium, no player will be willing to change
her linking decision when her turn to play comes. Therefore, once the chain reaches a Nash
equilibrium, it cannot escape from that state.
4) The probability that the potential will increase from t to t+ 1 is

Pr
[
Q

(
gt+1, X

) ≥ Q
(
gt, X

)]
=

=
∑
i

∑
j

Pr
(
mt+1 = ij

)
Pr

[
Ui

(
gt+1
ij , gt−ij, X

) ≥ Ui

(
gtij, g

t
−ij, X

)∣∣mt+1 = ij
]

︸ ︷︷ ︸
=1 because agents play Best Response, conditioning on mt+1

=
∑
i

∑
j

ρij = 1.

By part 3) of the proposition, a Nash network is an absorbing state of the chain. Therefore
any probability distribution that puts probability 1 on a Nash network is a stationary distri-
bution. For any initial network, the chain will converge to one of the stationary distributions.
It follows that in the long run the model will be in a Nash network, i.e. for any g0 ∈ G

lim
t→∞

Pr
[
gt ∈ NE

∣∣ g0] = 1.
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Proof of Theorem 1
1. The sequence of networks [g0, g1, ...] generated by the network formation game is a markov
chain. Inspection of the transition probability proves that the chain is irreducible and ape-
riodic, therefore it is ergodic. The existence of a unique stationary distribution then follows
from the ergodic theorem (see Gelman et al. (1996) for details).
2. A sufficient condition for stationarity is the detailed balance condition. In our case this
requires

Pgg′πg = Pg′gπg′ (21)

where

Pgg′ = Pr
(
gt+1 = g′

∣∣ gt = g
)

πg = π
(
gt = g

)
Notice that the transition from g to g′ is possible if these networks differ by only one element
gij. Otherwise the transition probability is zero and the detailed balance condition is satisfied.
Let’s consider the nonzero probability transitions, with g = (1, g−ij) and g′ = (0, g−ij). Define
ΔQ ≡ Q (1, g−ij, X)−Q (0, g−ij, X).

Pgg′πg = Pr
(
mt = ij

)
Pr (gij = 0| g−ij) exp [Q (1, g−ij, X)]∑

ω∈G
exp [Q (ω,X)]

= ρ (g−ij, Xi, Xj)× 1

1 + exp [ΔQ]
× exp [Q (1, g−ij, X) +Q (0, g−ij, X)−Q (0, g−ij, X)]∑

ω∈G
exp [Q (ω,X)]

= ρ (g−ij, Xi, Xj)× 1

1 + exp [ΔQ]
× exp [Q (1, g−ij, X)−Q (0, g−ij, X)] exp [Q (0, g−ij, X)]∑

ω∈G
exp [Q (ω,X)]

= ρ (g−ij, Xi, Xj)
exp [ΔQ]

1 + exp [ΔQ]

exp [Q (0, g−ij, X)]∑
ω∈G

exp [Q (ω,X)]

= Pr
(
mt = ij

)
Pr (gij = 1| g−ij) exp [Q (0, g−ij, X)]∑

ω∈G
exp [Q (ω,X)]

= Pg′gπg′

So the distribution (5) satisfies the detailed balance condition. Therefore it is a stationary
distribution for the network formation model. From part 1) of the proposition, we know that
the process is ergodic and it has a unique stationary distribution. Therefore π (g,X) is also
the unique stationary distribution.
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