A Model equilibrium: proofs

Proof of Proposition 1

The potential is a function ) from the space of actions to the real line such that @ (gi;, g—i;, X)—
Q (95, 9-ij, X) = Ui (935, 9—ij, X)=U; (g} 9—ij. X), for any ij.* A simple computation shows
that, for any ij

Q95 =1,9-45,X) —Q (955 = 0,945, X) = ug; + gjimi; + Z 9ikVik + Z GkiVkj
r WZi
= Ui (gij = 1,g—ij>X) - Ui (gz'j - ng—iij)

therefore () is the potential of the network formation game.

Proof of Corollary 1
The proof consists of showing that @ (g, X) can be written in the form 6t (g, X). Consider
the first part of the potential

P
DD gt = DY 0 ) by (Xi, X))
i i g p=1
P
= Zeupzzgz]Hup(XlaXJ)
p=1 (2]

P
Z euptup (ga X)
p=1

= 0.tu(9,X)
where tyy, (9, X) = 323" gijHup (X3, Xj), Oy = (b, oy Oup) and t, (9, X) = (tu1 (g, X)), ..., tur (9, X))".
i

Analogously define 0,, = (0,1, 02, .-, QmL)' and t,, (¢, X) = (tm1 (9, X) ,tma2 (9, X) ooy tmr. (9, X))'
and 6, = (0,1, 0.2, ...,HUS)/ and t, (g, X) = (ty1 (9, X) ,te2 (9, X), ..., tus (g,X))/. It follows
that

L
DD gugimy = LY i Y OmiHm (Xi, X))
1

i g>i P> I=

L
= Z 0 Z Z 9ij 95l (Xi, X;)
=1

i j>i
L

- Zemltml(gaX)
=1

= 0.tn (9. X)

45 For more details and definitions see Monderer and Shapley (1996).
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and

ZZQ@J > gpvig = ZZgn > o Z%Hvs X, X3)

ki, J ki, s=1
= ZQUSZZQU Z g]kHvs Xka’)
s=1 j k#i,j

S
- Z sttvs (97 X
s=1
- 9;131, <g7 X)

Therefore @ (g, X) can be written in the form 't (g, X), where § = (0,,,0,,,0,) and t (g, X) =
[6u (9, X) , (9, X) , b0 (9, X))

Q(g,X) = 0.tu(9.X)+ 0t (9. X) +6,t,(9,X)
0't (9, X)

and the stationary distribution is

exp [0't (g, X)]
ST exp [0t (w, X))

weg

(g, X) =

Model without preference shocks: characterization of Nash networks

It is helpful to consider a special case of the model, in which there are no preference
shocks: the characterization of equilibria and long run behavior for such model provides
intuition about the dynamic properties of the full structural model.
Let NV(g) be the set of networks that differ from g by only one element of the matrix, i.e.

N(g) =19 : 9 = (gij,9-i5), for all gi; # gij, for all i,j € T}. (19)

A Nash network is defined as a network in which any player has no profitable deviations from
his current linking strategy, when randomly selected from the population. The following
results characterize the set of the pure-strategy Nash equilibria and the long run behavior
of the model with no shocks.

PROPOSITION 2 (Model without Shocks: Equilibria and Long Run)

Consider the model without idiosyncratic preference shocks. Under Assumptions 1 and 2:

1. There exists at least one pure-strateqy Nash equilibrium network

34



2. The set NE(G, X, U) of all pure-strateqy Nash equilibria of the network formation game
15 completely characterized by the local maxima of the potential function.

NEG, X, U) = {g* 1 g" = arg max Q(Q,X)} (20)
geN (g7)

3. Any pure-strateqy Nash equilibrium is an absorbing state.
4. Ast — 00, the network converges to one of the Nash networks with probability 1.

Proof. 1) The existence of Nash equilibria follows directly from the fact that the network
formation game is a potential game with finite strategy space. (see Monderer and Shapley
(1996) for details)
2) The set of Nash equilibria is defined as the set of g* such that, for every ¢ and for every
9ij F# 93

Ui (g;;kj?giijaX) > U; (gij7giij,X)

Therefore, since () is a potential function, for every g;; # g;;

Q (g;k]?giz]aX) Z Q (gij’giij’X)

Therefore ¢g* is a maximizer of (). The converse is easily checked by the same reasoning.

3) Suppose ¢g' = g*. Since this is a Nash equilibrium, no player will be willing to change
her linking decision when her turn to play comes. Therefore, once the chain reaches a Nash
equilibrium, it cannot escape from that state.

4) The probability that the potential will increase from ¢ to t 4+ 1 is

PriQ(¢™.X) = Q (¢ X)] =

= DD Pr(m™ =ij) PrUi (g g". X) > Ui (g5, "5, X) | m""" = ij]
j N Vv

7

= Z;pzjzl-

i

=1 because agents play Best Response, conditioning on mt+1

By part 3) of the proposition, a Nash network is an absorbing state of the chain. Therefore
any probability distribution that puts probability 1 on a Nash network is a stationary distri-
bution. For any initial network, the chain will converge to one of the stationary distributions.
It follows that in the long run the model will be in a Nash network, i.e. for any ¢° € G

lim Pr [gt € NE‘ go] =1.

t—o00

35



Proof of Theorem 1

1. The sequence of networks [¢°, ¢!, ...] generated by the network formation game is a markov
chain. Inspection of the transition probability proves that the chain is irreducible and ape-
riodic, therefore it is ergodic. The existence of a unique stationary distribution then follows
from the ergodic theorem (see Gelman et al. (1996) for details).

2. A sufficient condition for stationarity is the detailed balance condition. In our case this
requires

P,

g9’ Mg = LggTy

(21)
where
Py, = Pr (gt—H _ g/|gt _ g)
Tg = T (gt = g)

Notice that the transition from g to ¢’ is possible if these networks differ by only one element
gij- Otherwise the transition probability is zero and the detailed balance condition is satisfied.
Let’s consider the nonzero probability transitions, with ¢ = (1, g_;;) and ¢’ = (0, g_;;). Define
AQ=Q(1,9-4,X) —Q(0,9-, X).

exp [Q (1, g4, X)]

Pyym, = Pr (mt = ij) Pr(gij = 0[g-i) S exp [Q (w, X)]
weG
_ 1 exp [@ (1,945, X) + Q (0,935, X) = Q (0,945, X)]
= Pl X X)X T DRG] > exp[Q (w, X))
weg
_ 1 exp [Q (1, 9-45, X) — Q (0,945, X)] exp [Q (0, g_s;, X)]
= P94, Xi, Xj) % 1+ exp [AQ)] . J 2 exp[@Q (]w,X)] J

weg
exp [AQ]  exp [Q (0, g—i;, X)]
1+ exp[AQ] Y exp[Q (w, X)]

= p(g-ij, Xi, Xj)

weg
X 0,9-i, X
= Pr(m'=1j) Pr(gi = 11g-4) eg Lilg [é?g(w,X))]]
weg

= Fygmy

So the distribution (5) satisfies the detailed balance condition. Therefore it is a stationary
distribution for the network formation model. From part 1) of the proposition, we know that
the process is ergodic and it has a unique stationary distribution. Therefore 7 (g, X) is also
the unique stationary distribution.
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