A Model equilibrium: proofs

Proof of Proposition 1

The potential is a function Q from the space of actions to the real line such that $Q(g_{ij}, g_{-ij}, X) - Q(g'_{ij}, g_{-ij}, X) = U_i(g_{ij}, g_{-ij}, X) - U_i(g'_{ij}, g_{-ij}, X)$, for any ij.⁴⁵ A simple computation shows that, for any ij

$$Q(g_{ij} = 1, g_{-ij}, X) - Q(g_{ij} = 0, g_{-ij}, X) = u_{ij} + g_{ji}m_{ij} + \sum_{\substack{k=1\\k \neq i,j}}^{n} g_{jk}v_{ik} + \sum_{\substack{k=1\\k \neq i,j}}^{n} g_{ki}v_{kj}$$
$$= U_i(g_{ij} = 1, g_{-ij}, X) - U_i(g_{ij} = 0, g_{-ij}, X)$$

therefore Q is the potential of the network formation game.

Proof of Corollary 1

The proof consists of showing that Q(g, X) can be written in the form $\theta' \mathbf{t}(g, X)$. Consider the first part of the potential

$$\sum_{i} \sum_{j} g_{ij} u_{ij} = \sum_{i} \sum_{j} g_{ij} \sum_{p=1}^{P} \theta_{up} H_{up} (X_i, X_j)$$
$$= \sum_{p=1}^{P} \theta_{up} \sum_{i} \sum_{j} g_{ij} H_{up} (X_i, X_j)$$
$$\equiv \sum_{p=1}^{P} \theta_{up} t_{up} (g, X)$$
$$= \theta'_{u} \mathbf{t}_{u} (g, X)$$

where $t_{up}(g, X) \equiv \sum_{i} \sum_{j} g_{ij} H_{up}(X_i, X_j), \theta_u = (\theta_{u1}, ..., \theta_{uP})'$ and $\mathbf{t}_u(g, X) = (t_{u1}(g, X), ..., t_{uP}(g, X))'.$

Analogously define $\theta_m = (\theta_{m1}, \theta_{m2}, ..., \theta_{mL})'$ and $\mathbf{t}_m (g, X) = (t_{m1} (g, X), t_{m2} (g, X), ..., t_{mL} (g, X))'$ and $\theta_v = (\theta_{v1}, \theta_{v2}, ..., \theta_{vS})'$ and $\mathbf{t}_v (g, X) = (t_{v1} (g, X), t_{v2} (g, X), ..., t_{vS} (g, X))'$. It follows that

$$\sum_{i} \sum_{j>i} g_{ij} g_{ji} m_{ij} = \sum_{i} \sum_{j>i} g_{ij} g_{ji} \sum_{l=1}^{L} \theta_{ml} H_{ml} (X_i, X_j)$$
$$= \sum_{l=1}^{L} \theta_{ml} \sum_{i} \sum_{j>i} g_{ij} g_{ji} H_{ml} (X_i, X_j)$$
$$= \sum_{l=1}^{L} \theta_{ml} t_{ml} (g, X)$$
$$= \theta'_m \mathbf{t}_m (g, X)$$

⁴⁵ For more details and definitions see Monderer and Shapley (1996).

and

$$\sum_{i} \sum_{j} g_{ij} \sum_{k \neq i,j} g_{jk} v_{ij} = \sum_{i} \sum_{j} g_{ij} \sum_{k \neq i,j} g_{jk} \sum_{s=1}^{S} \theta_{vs} H_{vs} (X_i, X_k)$$
$$= \sum_{s=1}^{S} \theta_{vs} \sum_{i} \sum_{j} g_{ij} \sum_{k \neq i,j} g_{jk} H_{vs} (X_i, X_k)$$
$$= \sum_{s=1}^{S} \theta_{vs} t_{vs} (g, X)$$
$$= \theta'_v \mathbf{t}_v (g, X)$$

Therefore Q(g, X) can be written in the form $\theta' \mathbf{t}(g, X)$, where $\theta = (\theta_u, \theta_m, \theta_v)'$ and $\mathbf{t}(g, X) = [\mathbf{t}_u(g, X), \mathbf{t}_m(g, X), \mathbf{t}_v(g, X)]'$

$$Q(g,X) = \theta'_{u}\mathbf{t}_{u}(g,X) + \theta'_{m}\mathbf{t}_{m}(g,X) + \theta'_{v}\mathbf{t}_{v}(g,X)$$

= $\theta'\mathbf{t}(g,X)$

and the stationary distribution is

$$\pi(g, X) = \frac{\exp\left[\theta' \mathbf{t}(g, X)\right]}{\sum_{\omega \in \mathcal{G}} \exp\left[\theta' \mathbf{t}(\omega, X)\right]}$$

Model without preference shocks: characterization of Nash networks

It is helpful to consider a *special case* of the model, in which there are no preference shocks: the characterization of equilibria and long run behavior for such model provides intuition about the dynamic properties of the full structural model.

Let $\mathcal{N}(g)$ be the set of networks that differ from g by only one element of the matrix, i.e.

$$\mathcal{N}(g) \equiv \{g' : g' = (g'_{ij}, g_{-ij}), \text{ for all } g'_{ij} \neq g_{ij}, \text{ for all } i, j \in \mathcal{I}\}.$$
(19)

A Nash network is defined as a network in which any player has no profitable deviations from his current linking strategy, when randomly selected from the population. The following results characterize the set of the pure-strategy Nash equilibria and the long run behavior of the model with no shocks.

PROPOSITION 2 (Model without Shocks: Equilibria and Long Run)

Consider the model without idiosyncratic preference shocks. Under Assumptions 1 and 2:

1. There exists at least one pure-strategy Nash equilibrium network

2. The set $\mathcal{NE}(\mathcal{G}, X, U)$ of all pure-strategy Nash equilibria of the network formation game is completely characterized by the local maxima of the potential function.

$$\mathcal{NE}(\mathcal{G}, X, U) = \left\{ g^* : g^* = \arg \max_{g \in \mathcal{N}(g^*)} Q\left(g, X\right) \right\}$$
(20)

- 3. Any pure-strategy Nash equilibrium is an absorbing state.
- 4. As $t \to \infty$, the network converges to one of the Nash networks with probability 1.

Proof. 1) The existence of Nash equilibria follows directly from the fact that the network formation game is a potential game with finite strategy space. (see Monderer and Shapley (1996) for details)

2) The set of Nash equilibria is defined as the set of g^* such that, for every i and for every $g_{ij} \neq g_{ij}^*$

$$U_i(g_{ij}^*, g_{-ij}^*, X) \ge U_i(g_{ij}, g_{-ij}^*, X)$$

Therefore, since Q is a potential function, for every $g_{ij} \neq g_{ij}^*$

$$Q(g_{ij}^*, g_{-ij}^*, X) \ge Q(g_{ij}, g_{-ij}^*, X)$$

Therefore g^* is a maximizer of Q. The converse is easily checked by the same reasoning. 3) Suppose $g^t = g^*$. Since this is a Nash equilibrium, no player will be willing to change her linking decision when her turn to play comes. Therefore, once the chain reaches a Nash equilibrium, it cannot escape from that state.

4) The probability that the potential will increase from t to t + 1 is

$$Pr\left[Q\left(g^{t+1},X\right) \ge Q\left(g^{t},X\right)\right] =$$

$$= \sum_{i} \sum_{j} \Pr\left(m^{t+1} = ij\right) \underbrace{\Pr\left[U_{i}\left(g_{ij}^{t+1}, g_{-ij}^{t}, X\right) \ge U_{i}\left(g_{ij}^{t}, g_{-ij}^{t}, X\right) \middle| m^{t+1} = ij\right]}_{=1 \text{ because agents play Best Response, conditioning on } m^{t+1}}$$
$$= \sum_{i} \sum_{j} \rho_{ij} = 1.$$

By part 3) of the proposition, a Nash network is an absorbing state of the chain. Therefore any probability distribution that puts probability 1 on a Nash network is a stationary distribution. For any initial network, the chain will converge to one of the stationary distributions. It follows that in the long run the model will be in a Nash network, i.e. for any $g^0 \in \mathcal{G}$

$$\lim_{t \to \infty} \Pr\left[g^t \in NE \, \middle| \, g^0 \right] = 1.$$

Proof of Theorem 1

1. The sequence of networks $[g^0, g^1, ...]$ generated by the network formation game is a markov chain. Inspection of the transition probability proves that the chain is irreducible and aperiodic, therefore it is ergodic. The existence of a unique stationary distribution then follows from the ergodic theorem (see Gelman et al. (1996) for details).

2. A sufficient condition for stationarity is the *detailed balance* condition. In our case this requires

$$P_{gg'}\pi_g = P_{g'g}\pi_{g'} \tag{21}$$

where

$$P_{gg'} = \Pr\left(g^{t+1} = g' \middle| g^t = g\right)$$

$$\pi_g = \pi\left(g^t = g\right)$$

Notice that the transition from g to g' is possible if these networks differ by only one element g_{ij} . Otherwise the transition probability is zero and the detailed balance condition is satisfied. Let's consider the nonzero probability transitions, with $g = (1, g_{-ij})$ and $g' = (0, g_{-ij})$. Define $\Delta Q \equiv Q(1, g_{-ij}, X) - Q(0, g_{-ij}, X)$.

$$\begin{split} P_{gg'}\pi_g &= \Pr\left(m^t = ij\right) \Pr\left(g_{ij} = 0 | \, g_{-ij}\right) \frac{\exp\left[Q\left(1, g_{-ij}, X\right)\right]}{\sum\limits_{\omega \in \mathcal{G}} \exp\left[Q\left(\omega, X\right)\right]} \\ &= \rho\left(g_{-ij}, X_i, X_j\right) \times \frac{1}{1 + \exp\left[\Delta Q\right]} \times \frac{\exp\left[Q\left(1, g_{-ij}, X\right) + Q\left(0, g_{-ij}, X\right) - Q\left(0, g_{-ij}, X\right)\right]}{\sum\limits_{\omega \in \mathcal{G}} \exp\left[Q\left(\omega, X\right)\right]} \\ &= \rho\left(g_{-ij}, X_i, X_j\right) \times \frac{1}{1 + \exp\left[\Delta Q\right]} \times \frac{\exp\left[Q\left(1, g_{-ij}, X\right) - Q\left(0, g_{-ij}, X\right)\right] \exp\left[Q\left(0, g_{-ij}, X\right)\right]}{\sum\limits_{\omega \in \mathcal{G}} \exp\left[Q\left(\omega, X\right)\right]} \\ &= \rho\left(g_{-ij}, X_i, X_j\right) \frac{\exp\left[\Delta Q\right]}{1 + \exp\left[\Delta Q\right]} \frac{\exp\left[Q\left(0, g_{-ij}, X\right)\right]}{\sum\limits_{\omega \in \mathcal{G}} \exp\left[Q\left(\omega, X\right)\right]} \\ &= \Pr\left(m^t = ij\right) \Pr\left(g_{ij} = 1 | \, g_{-ij}\right) \frac{\exp\left[Q\left(0, g_{-ij}, X\right)\right]}{\sum\limits_{\omega \in \mathcal{G}} \exp\left[Q\left(\omega, X\right)\right]} \\ &= P_{g'g}\pi_{g'} \end{split}$$

So the distribution (5) satisfies the detailed balance condition. Therefore it is a stationary distribution for the network formation model. From part 1) of the proposition, we know that the process is ergodic and it has a unique stationary distribution. Therefore $\pi(g, X)$ is also the unique stationary distribution.