
B Computational Details

B.1 Network Simulation

The algorithm used to simulate the network (ALGORITHM 1) produces samples from
the stationary equilibrium of the model.

1. The network simulation algorithm satisfies the detailed balance condition for the sta-
tionary distribution 5. Indeed for any given θ

Pr (g′|g,X, θ) π (g,X, θ) = qg (g
′|g)min

{
1,

exp [Q (g′, X, θ)]

exp [Q (g,X, θ)]

qg (g|g′)
qg (g′|g)

}
exp [Q (g,X, θ)]

c (G, X, θ)

= min

{
qg (g

′|g) exp [Q (g,X, θ)]

c (G, X, θ)
,
exp [Q (g′, X, θ)]

c (G, X, θ)
qg (g|g′)

}
= qg (g|g′)min

{
qg (g

′|g)
qg (g|g′)

exp [Q (g,X, θ)]

c (G, X, θ)
,
exp [Q (g′, X, θ)]

c (G, X, θ)

}
= qg (g|g′)min

{
qg (g

′|g)
qg (g|g′)

exp [Q (g,X, θ)]

exp [Q (g′, X, θ)]
, 1

}
exp [Q (g′, X, θ)]

c (G, X, θ)

= Pr (g|g′, X, θ) π (g′, X, θ)

This concludes the proof.

2. The algorithm generates a Markov Chain of network with finite state space. The chain
is irreducible and aperiodic and therefore it is uniformly ergodic (see Theorem 4.9,
page 52 in Levin et al. (2008)).

3. The bound to the convergence rate used in the text was derived by Diaconis and
Stroock (1991), for reversible finite chains.

The algorithm has a very useful property that can be exploited in the posterior simulation to
reduce the computational burden. Adapting the suggestion in Liang (2010), define P (R)

θ′ (g′|g)
as the transition probability of a Markov chain that generates g′ with R Metropolis-Hastings
updates of the network simulation algorithm, starting at the observed network g and using
the proposed parameter θ′. Then,

P (R)
θ′ (g′|g) = Pθ′(g

1|g)Pθ′(g
2|g1) · · · Pθ′(g

′|gR−1), (22)

where Pθ′(g
j|gi) = qg(g

j|gi)αmh(g
i, gj) is the transition probability of the network simulation

algorithm above. Since the Metropolis-Hastings algorithm satisfies the detailed balance
condition, we can prove the following
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LEMMA 1 Simulate a network g′ from the stationary distribution π (·, X, θ′) using a Metropolis-
Hastings algorithm starting at the network g observed in the data. Then

P (R)
θ′ (g|g′)
P (R)

θ′ (g′|g)
=

exp [Q(g,X, θ′)]
exp [Q(g′, X, θ′)]

(23)

for all R, g, g′ ∈ G and for any θ′ ∈ Θ.

Proof. Let P (R)
θ′ (g′|g) be defined as in (22). This is the transition probability of the chain

that generates g′ with R Metropolis-Hastings updates, starting at the observed network g
and using the proposed parameter θ′. Notice that the Metropolis-Hastings algorithm satisfies
the detailed balance for π (g,X, θ′), therefore we have

P (R)
θ′ (g|g′)π (g′, X, θ′) = Pθ′(gR−1|g′)Pθ′(gR−2|gR−1) · · · Pθ′(g|g1)π (g′, X, θ′)

= Pθ′(g1|g)Pθ′(g2|g1) · · · Pθ′(g
′|gR−1)π (g,X, θ′)

= P (R)
θ′ (g′|g)π (g,X, θ′)

It follows that

P (R)
θ′ (g|g′)
P (R)

θ′ (g′|g)
=

π (g,X, θ′)
π (g′, X, θ′)

=
exp [Q(g,X, θ′)]
exp [Q(g′, X, θ′)]

c (G, X, θ′)
c (G, X, θ′)

=
exp [Q(g,X, θ′)]
exp [Q(g′, X, θ′)]

.

This concludes the proof.

One should notice that as long as the algorithm is started from the network g observed in
the data (which is assumed to be a draw from the stationary equilibrium of the model), the
equality in (23) is satisfied for any R.

The approximate exchange algorithm presented in this paper removes the requirement
of exact sampling by exploiting the property of the stationary equilibrium characterization,
described in Lemma 1.

Local simulations and Large steps
The theoretical results using graph limits and large deviations suggest that the local sampler
has systematic convergence problems, even when in principle the simulation is trivial because
links are asymptotically independent (β > 0).

To attenuate these convergence issue, we propose a modification that allows the sampler
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to make larger steps, in particular steps that are not o(n). The local chain selects a link
gij with probability 1/(n(n − 1)), proposing to swap the value to 1 − gij. We add the
following large steps. First, with probability pr, the sampler selects a player i at random
(with probability 1/n) and proposes to swap all his links, i.e. gij = 1−gij for each j = 1, ..., n.
Second, with probability pc, the sampler selects a player i at random (with probability 1/n)
and proposes to swap all the links pointing at i, i.e. gji = 1− gji for each j = 1, ..., n. Third,
with probability pf , the sampler selects uniformly at random �λn� links, where λ ∈ (0, 1),
and proposes to swap all of them. Notice that this step size is a function of n, and in
particular is not o(n). The crucial ingredient is to make the length of the step a function
of n. The parameter λ is under control of the researcher: higher values allow larger steps
and increase the computational cost of sampling. Lastly, with probability pinv the sampler
proposes to invert the adjacency matrix. The goal of this large step is to provide a way to
jump across modes of the stationary distribution, when it is bimodal. 46

Using this sampler, we reproduce the simulation in Figure 1. We know that the local
chain can get trapped in local maxima of the variational problem. If we simulate model (10)
with parameters (α, β) = (−3, 3), we obtain Figure 8(A). While Theorem 2 states that the
simulations should converge to the sparse network density μ1 ≈ 0.07, we observe that the
local sampler converges to a dense network with μ2 ≈ 0.93, if started at dense networks.
In other words, when started at a dense network (say the full network), the sampler gets
trapped in a local maximum of the variational problem, with density μ2 ≈ 0.93. Figure 8(B)
shows that our modified sampler does not have this problem, and also the chains started at
dense network converge to the correct (sparse) network density. This simple modification
gets rid of the exponentially slow convergence of the local algorithm. More generally, these
larger steps allow the sampler to escape local maxima of the potential function.

In general this modification should help the sampler when the likelihood has multiple
modes. However, the improvement comes with the increase cost of sampling and additional
computational time. In some models the cost may be substantial. For example, it is intuitive
that in regions of the parameters space (say, β < 0) where the likelihood is unimodal, the
gains from this modified sampler are minimal.

B.2 Posterior Simulation

In this section I provide the technical details for the algorithm proposed in the empirical
part of the paper. The first set of results show that the exchange algorithm generate (ap-
proximate) samples from the posterior distribution (7).

The original exchange algorithm developed in Murray et al. (2006) is slightly different
from the one used here. The main modification is in Step 2: the original algorithm requires
an exact sample from the stationary equilibrium of the model.

ALGORITHM 3 (EXACT EXCHANGE ALGORITHM)

46We have seen that this is the case in the homogeneous player case, for many parameter values.
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Figure 8: Local sampler versus Modified sampler
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Comparison of network samplers for model (10), with parameters (α, β) = (−3, 3). Panel (A) shows the simulation using the

local-chain sampler, which converges to two different link densities (μ1 ≈ 0.07 and μ2 ≈ 0.93). However, we know from Theorem

2, that the correct simulation should converge to the sparse network density. So the local chain fails to sample correctly if we

start it at a dense network, because it gets trapped at a local maximum of the stationary distribution. Panel (B) shows the

simulation using the modified algorithm. We use pr = pf = pinv = 0.01. The simulations converge to the correct link density

for any starting value, therefore our modified algorithm provides a better sampler for the model.

Start at current parameter θt = θ and network data g.

1. Propose a new parameter vector θ′

θ′ ∼ qθ(·|θ) (24)

2. Draw an exact sample network g′ from the likelihood

g′ ∼ π (·|X, θ′) (25)

3. Compute the acceptance ratio

αex (θ, θ
′, g′, g) = min

{
1,

exp [Q(g′, X, θ)]

exp [Q(g,X, θ)]

p (θ′)
p (θ)

qθ (θ|θ′)
qθ (θ′|θ)

exp [Q(g,X, θ′)]
exp [Q(g′, X, θ′)]

c(θ)c(θ′)
c(θ)c(θ′)

}
= min

{
1,

exp [Q(g′, X, θ)]

exp [Q(g,X, θ)]

p (θ′)
p (θ)

qθ (θ|θ′)
qθ (θ′|θ)

exp [Q(g,X, θ′)]
exp [Q(g′, X, θ′)]

}
(26)
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4. Update the parameter according to

θt+1 =

{
θ′ with prob. αex (θ, θ

′, g′, g)
θ with prob. 1− αex (θ, θ

′, g′, g)
(27)

The difference between this algorithm and the approximate one is in step 2. The exact
and approximate algorithms use the same acceptance ratio αex (θ, θ

′, g′, g), a consequence of
LEMMA 1. Indeed the acceptance ratio for the approximate algorithm is

α̃ex (θ, θ
′, g′, g) = min

{
1,

exp [Q(g′, X, θ)]

exp [Q(g,X, θ)]

p (θ′)
p (θ)

qθ (θ|θ′)
qθ (θ′|θ)

P (R)
θ′ (g|g′)
P (R)

θ′ (g′|g)

}
(28)

= min

{
1,

exp [Q(g′, X, θ)]

exp [Q(g,X, θ)]

p (θ′)
p (θ)

qθ (θ|θ′)
qθ (θ′|θ)

exp [Q(g,X, θ′)]
exp [Q(g′, X, θ′)]

}
(29)

= αex (θ, θ
′, g′, g) (30)

This result implies that to prove the convergence of the approximate algorithm to the exact
algorithm, there is no need to prove convergence of α̃ex (θ, θ

′, g′, g) to αex (θ, θ
′, g′, g). The

convergence of step 2 of the algorithm is sufficient.

B.2.1 Preliminary Lemmas for THEOREM 6

The convergence of the approximate exchange algorithm to the correct posterior distribution
is proven in 4 steps.

1. First we prove that the exact exchange algorithm converges to the correct posterior
(LEMMA 2)

2. Second, we prove that the approximate algorithm has a stationary distribution and it
is ergodic (LEMMA 3, similar to the one in Liang 2010)

3. Third, we prove that the transition kernel of the approximate and exact algorithms
are arbitrarily close for a large enough number of network simulations (LEMMA 4)

4. Fourth, we combine previous results to prove that the approximate algorithm converges
to the correct posterior

A similar proof strategy is contained in Liang et al. (2010) and Andrieu and Roberts (2009).

Let Q (dϑ|θ) = qθ (ϑ|θ) ν (dϑ). The transition kernel of the exact exchange algorithm can be
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written as

P (θ, dϑ) =

[∑
g′∈G

π (g′, ϑ)αex (θ, ϑ, g
′, g)

]
Q (θ, dϑ)

+ δθ (dϑ)

{
1−

∫
Θ

[∑
g′∈G

π (g′, ϑ)αex (θ, ϑ, g
′, g)

]
Q (θ, dϑ)

}

and the transition kernel of the approximate exchange algorithm can be written as

P̃R (θ, dϑ) =

[∑
g′∈G

P (R)
ϑ (g′|g)αex (θ, ϑ, g

′, g)

]
Q (θ, dϑ)

+ δθ (dϑ)

{
1−

∫
Θ

[∑
g′∈G

P (R)
ϑ (g′|g)αex (θ, ϑ, g

′, g)

]
Q (θ, dϑ)

}

Let η (θ) be the average rejection probability for the approximate algorithm, i.e.

η (θ) := 1−
∫
Θ

[∑
g′∈G

P (R)
ϑ (g′|g)αex (θ, ϑ, g

′, g)

]
Q (θ, dϑ) (31)

The next lemma proves that the transition kernel satisfies the detailed balance condition for
the posterior distribution. For any pair of parameters (θ, ϑ) ∈ Θ we have

P [θ, ϑ|g,X] p (θ|g,X) = Pr [θ|ϑ, g,X] p (ϑ|g,X) (32)

The detailed balance condition is sufficient condition for the Markov chain generated by the
algorithm to have stationary distribution the posterior (7) (for details see Robert and Casella
(2005) or Gelman et al. (2003)).

LEMMA 2 The exchange algorithm produces a Markov chain with invariant distribution
(7).

Proof. Define Z ≡ ∫
Θ
π (g|X, θ) p (θ) dθ. In the algorithm the probability Pr [ϑ|θ, g,X]

of transition to θj, given the current parameter θ and the observed data (g,X), can be
computed as

Pr [ϑ|θ, g,X] = qθ (ϑ|θ) exp [Q(g′, X, ϑ)]

c(G, X, ϑ)
αex (θ, ϑ, g

′, g) . (33)

This is the probability qθ (ϑ|θ) of proposing ϑ times the probability of generating the new

network g′ from the model’s stationary distribution, exp[Q(g′,X,ϑ)]
c(G,X,ϑ)

and accepting the proposed
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parameter αex (θ, ϑ, g
′, g). Therefore the left-hand side of (32) can be written as

Pr [ϑ|θ, g,X] p (θ|g,X) = qθ (ϑ|θ) exp [Q(g′, X, ϑ)]

c(G, X, ϑ)
αex (θ, ϑ, g

′, g) p (θ|g,X)

= qθ (ϑ|θ) exp [Q(g′, X, ϑ)]

c(G, X, ϑ)
αex (θ, ϑ, g

′, g)
exp[Q(g,X,θ)]

c(G,X,θ)
p (θ)

Z
= qθ (ϑ|θ) exp [Q(g′, X, ϑ)]

c(G, X, ϑ)

× min

{
1,

exp [Q(g′, X, θ)]

exp [Q(g,X, θ)]

p (ϑ)

p (θ)

qθ (θ|ϑ)
qθ (ϑ|θ)

exp [Q(g,X, ϑ)]

exp [Q(g′, X, ϑ)]

}
×

exp[Q(g,X,θ)]
c(G,X,θ)

p (θ)

Z

= min

{
qθ (ϑ|θ) exp [Q(g′, X, ϑ)]

c(G, X, ϑ)

exp [Q(g,X, θ)]

c(G, X, θ)

p (θ)

Z , qθ (θ|ϑ) exp [Q(g′, X, θ]

c(G, X, θ)

exp [Q(g,X, ϑ)]

c(G, X, ϑ)

p (ϑ)

Z
}

= qθ (θ|ϑ) exp [Q(g′, X, θ)]

c(G, X, θ)

exp [Q(g,X, ϑ)]

c(G, X, ϑ)

p (ϑ)

Z ×

× min

{
1,

exp [Q(g′, X, ϑ)]

exp [Q(g,X, ϑ)]

p (θ)

p (ϑ)

qθ (ϑ|θ)
qθ (θ|ϑ)

exp [Q(g,X, θ)]

exp [Q(g′, X, θ)]

}
= qθ (θ|ϑ) exp [Q(g′, X, θ)]

c(G, X, θ)
α(ϑ, θ, g′, g)

exp [Q(g,X, ϑ)]

c(G, X, ϑ)

p (ϑ)

Z
= qθ (θ|ϑ) exp [Q(g′, X, θ)]

c(G, X, θ)
α(ϑ, θ, g′, g)p (ϑ|g,X)

= Pr [θ|ϑ, g,X] p (ϑ|g,X)

The latter step proves the detailed balance for a generic network g′. Since the condition is
satisfied for any network g′, detailed balance follows from summing over all possible networks.

LEMMA 3 (The approximate algorithm is ergodic)
Assume the exact exchange algorithm is ergodic and that for any ϑ ∈ Θ

P (R)
ϑ (g′|g)
π (g′, ϑ)

> 0 for any g′ ∈ G (34)

Then for any R ∈ N such that for any θ ∈ Θ , ρ(θ) > 0, the transition kernel of the

approximate algorithm P̃R is also irreducible and aperiodic, and there exists a stationary
distribution p̃ (θ) such that

lim
s→∞

∥∥∥P̃ (s)
R (θ0, ·)− p̃ (θ)

∥∥∥
TV

= 0 (35)
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Proof. The exact algorithm with transition kernel P is an irreducible and aperiodic Markov
chain. To prove that the approximate algorithm with transition kernel P̃R defines an ergodic
Markov chain, it is sufficient to prove that the set of accessible states of P are also included
in those of P̃R. The proof proceeds by induction.
Formally, we need to show that for any s ∈ N, θ ∈ Θ and A ∈ B (Θ) such that P (s) (θ, A) > 0,

implies P̃
(s)
R (θ, A) > 0.

Notice that for any θ ∈ Θ and A ∈ B (Θ),

P̃R (θ, A) =

∫
A

[∑
g′∈G

P (R)
ϑ (g′|g)αex (θ, ϑ, g

′, g)

]
qθ (ϑ|θ) dϑ+ I (θ ∈ A) η (θ)

≥
∫
A

[∑
g′∈G

min

{
1,
P (R)

ϑ (g′|g)
π (g′, ϑ)

}
π (g′, ϑ)αex (θ, ϑ, g

′, g)

]
qθ (ϑ|θ) dϑ+ I (θ ∈ A) η (θ) > 0

where the last inequality comes from
P(R)
ϑ (g′|g)
π(g′,ϑ) > 0 for any g′ ∈ G and ϑ ∈ Θ.

This proves that the statement is true when s = 1. By induction we assume that it is true
up to s = n ≥ 1 and for some θ ∈ Θ chose A ∈ B (Θ) such that P (n+1) (θ, A) > 0 and assume
that ∫

Θ

P̃
(n)
R (θ, dϑ) P̃R (ϑ,A) = 0

This implies that P̃R (ϑ,A) = 0, P̃
(n)
R (θ, ·)-a.s.; by the induction assumption at s = 1 it

follows that P (ϑ,A) = 0, P̃
(n)
R (θ, ·)-a.s.

From this and the induction assumption at s = n, P (ϑ,A) = 0, P (n) (θ, ·)-a.s. (assume not,

then P (ϑ,A) > 0, P (n) (θ, ·)-a.s. which by induction would imply P̃R (ϑ,A) > 0, which is a
contradiction). The latter step contradicts P (n+1) (θ, A) > 0 and the result follows.

The next step consists of proving that the transition kernel of the approximate algorithm
P̃R (θ, ϑ) and the exact algorithm P (θ, ϑ) are arbitrarily close for a large enough number
of network simulations R. Formally we prove a statement which is equivalent to proving
convergence in total variation norm.47

LEMMA 4 (Convergence of the exact and approximate transition kernels)
Let ε ∈ (0, 1]. There exists a number of simulations R0 ∈ N such that for any function
φ : Θ→ [−1, 1] and any R > R0 , ∣∣∣P̃Rφ(θ)− Pφ(θ)

∣∣∣ < 2ε (36)

47See Levin et al. (2008), proposition 4.5, page 49.
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Proof. The transition of the exchange algorithm is

P (φ(θ), φ(ϑ)) =

∫
Θ

φ(ϑ)

[∑
g′∈G

π (g′, ϑ)αex (θ, ϑ, g
′, g)

]
qθ (ϑ|θ) dϑ

+ φ(θ)

[
1−

∫
Θ

[∑
g′∈G

π (g′, ϑ)αex (θ, ϑ, g
′, g)

]
qθ (ϑ|θ) dϑ

]
while the transition kernel for the approximate algorithm is

P̃R (φ(θ), φ(ϑ)) =

∫
Θ

φ(ϑ)

[∑
g′∈G

P (R)
ϑ (g′|g)αex (θ, ϑ, g

′, g)

]
qθ (ϑ|θ) dϑ

+ φ(θ)

[
1−

∫
Θ

[∑
g′∈G

P (R)
ϑ (g′|g)αex (θ, ϑ, g

′, g)

]
qθ (ϑ|θ) dϑ

]
and therefore the difference is

S = P (φ(θ), φ(ϑ))− P̃R (φ(θ), φ(ϑ))

=

∫
Θ

φ(ϑ)

[∑
g′∈G

[
π (g′, ϑ)− P (R)

ϑ (g′|g)
]
αex (θ, ϑ, g

′, g)

]
qθ (ϑ|θ) dϑ

− φ(θ)

∫
Θ

[∑
g′∈G

[
π (g′, ϑ)− P (R)

ϑ (g′|g)
]
αex (θ, ϑ, g

′, g)

]
qθ (ϑ|θ) dϑ

Consider the quantity

S0 =

∫
Θ

[∑
g′∈G

[
π (g′, ϑ)− P (R)

ϑ (g′|g)
]
αex (θ, ϑ, g

′, g)

]
qθ (ϑ|θ) dϑ

≤
∫
Θ

[∑
g′∈G

∣∣∣π (g′, ϑ)− P (R)
ϑ (g′|g)

∣∣∣αex (θ, ϑ, g
′, g)

]
qθ (ϑ|θ) dϑ

and since αex (θ, ϑ, g
′, g) ≤ 1 for any (θ, ϑ) ∈ Θ×Θ and (g′, g) ∈ G × G, we have

S0 ≤
∫
Θ

[∑
g′∈G

∣∣∣π (g′, ϑ)− P (R)
ϑ (g′|g)

∣∣∣] qθ (ϑ|θ) dϑ
=

∫
Θ

[
2 sup
g′∈G

∣∣∣π (g′, ϑ)− P (R)
ϑ (g′|g)

∣∣∣] qθ (ϑ|θ) dϑ
The convergence of the network simulation algorithm implies that for any ε > 0, there exists
an R0 (ϑ, ε) ∈ N such that for any R > R0 (ϑ, ε) and for any g ∈ G

2 sup
g′∈G

∣∣∣π (g′, ϑ)− P (R)
ϑ (g′|g)

∣∣∣ ≤ ε
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Pick R0 (ε) = maxϑ∈Θ {R0 (ϑ, ε)}. Then for any ε ∈ (0, 1], there is an R0 (ε) ∈ N such that
for any R > R0 (ε) and for any g ∈ G

S0 ≤
∫
Θ

εqθ (ϑ|θ) dϑ = ε

This implies that

|S| ≤ |2S0| = 2ε

(37)

The next theorem is the main result for the convergence. It states that the approximate ex-
change algorithm converges to the correct posterior distribution, provided that the number
of network simulations and parameter samples are big enough.

B.2.2 Proof of THEOREM 6

. Proof. The main idea is to decompose the total variation in two components∥∥∥P̃ (s)
R (θ0, ·)− p (·|g,X)

∥∥∥
TV

=
∥∥∥P̃ (s)

R (θ0, ·)− P (s) (θ0, ·) + P (s) (θ0, ·)− p (·|g,X)
∥∥∥
TV

≤
∥∥∥P̃ (s)

R (θ0, ·)− P (s) (θ0, ·)
∥∥∥
TV

+
∥∥P (s) (θ0, ·)− p (·|g,X)

∥∥
TV

and prove that each component converges. We will use the same idea, but rewrite the total
variation in a more convenient form.48 For any function φ : Θ→ [−1, 1] we have∣∣∣P̃ (s)

R φ (θ0)− p (φ)
∣∣∣ =

∣∣∣P̃ (s)
R φ (θ0)− P (s)φ (θ0) + P (s)φ (θ0)− p (φ)

∣∣∣
≤

∣∣∣P̃ (s)
R φ (θ0)− P (s)φ (θ0)

∣∣∣+ ∣∣P (s)φ (θ0)− p (φ)
∣∣

The second component converges because the exact exchange algorithm is ergodic, as stated
in Lemma. For any ε > 0 there is number of simulation steps s(θ0, ε), such that for any
s ≥ s(θ0, ε) ∣∣P (s)φ (θ0)− p (φ)

∣∣ ≤ ε (38)

For the remaining of the proof, I will set s0 := s(θ0, ε). I use the telescoping sum decompo-
sition in Andrieu and Roberts (2009) (page 15, adapted from last formula)∣∣∣P̃ (s0)

R φ (θ0)− P (s0)φ (θ0)
∣∣∣ =

∣∣∣∣∣
s0−1∑
l=0

[
P (l)P̃

(s0−l)
R φ (θ0)− P (l+1)P̃

(s0−(l+1))
R φ (θ0)

]∣∣∣∣∣
=

∣∣∣∣∣
s0−1∑
l=0

P (l)
(
P̃R − P

)
P̃

(s0−(l+1))
R φ (θ0)

∣∣∣∣∣
48See Levin et al. (2008), proposition 4.5, page 49.
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Now we can apply s0 times the result of LEMMA 4 (as in Liang et al. (2010) and Andrieu and
Roberts (2009)) to prove that there exists an R0 (θ0, ε) ∈ N such that for any R > R0 (θ0, ε)∣∣∣P̃ (s0)

R φ (θ0)− P (s0)φ (θ0)
∣∣∣ ≤ 2s0ε (39)

this implies ∣∣∣P̃ (s)
R φ (θ0)− p (φ)

∣∣∣ ≤ (2s0 + 1) ε (40)

We conclude the proof by choosing ε = ε/ (2s0 + 1).
This proves that the approximate exchange algorithm is ergodic, therefore the law of

large number holds, and the second part of the theorem is proven.
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