
D Large networks analysis and convergence

In this paper, we developed a network formation game model, which results in an equilibrium
network similar to a directed ERGM. The probability of observing network g is given by
(notice that gij = 1 does not imply gji = 1, because it is a directed network)

πn(g) =
exp

[∑n
i=1

∑n
j=1 gijuij +

1
2

∑n
i=1

∑n
j=1 gijgjimij +

∑n
i=1

∑n
j=1

∑n
k �=i,j gijgjkvik

]
c(Gn)

where the functions uij = u(Xi, Xj, θu), mij = m(Xi, Xj, θm) and vik = v(Xi, Xk, θv)
are function of vectors of covariates X ′

is and parameters θ = (θu, θm, θv). To simplify, we
will assume that all this functions are constants, so that we do not consider the covariates.
Hence, the probability of observing network g with parameters α, β, γ

πn(g;α, β, γ) =
exp

[
α
∑n

i=1

∑n
j=1 gij +

β
2

∑n
i=1

∑n
j=1 gijgji + γo

∑n
i=1

∑n
j=1

∑n
k �=i gijgjk

]
c(α, β, γ,Gn)

To apply the analysis of Diaconis and Chatterjee (2011), we rescale the terms as

πn(g;α, β, γ) =
exp

{
n2

[
α

∑n
i=1

∑n
j=1 gij

n2 + β
2

∑n
i=1

∑n
j=1 gijgji

n2 + γ
∑n

i=1

∑n
j=1

∑n
k �=i gijgjk

n3

]}
c(α, β, γ,Gn)

(46)

Notice that γ needs to be rescaled (i.e. divided by n) when we run the simulations using
the usual ERGM form, i.e. γo = γ

n
for simulations using the ergm package in the software R.

In the formula above, the term
∑n

i=1

∑n
j=1 gij

n2 is the directed edge density of the network,

the term
∑n

i=1

∑n
j=1 gijgji

n2 is the reciprocity density, while
∑n

i=1

∑n
j=1

∑n
k �=i gijgjk

n3 is the density
of directed two-paths (in our model the latter is intepreted as popularity or indirect links
effect).

In this appendix we provide the technical results about the graph limits, large deviations
and mean-field approximations of the model. In the exposition for graph limits and large
deviations we report some results for undirected networks from Chatterjee and Varadhan
(2011) and Diaconis and Chatterjee (2011), for completeness.

D.1 A crash course on graph limits

Most of this brief digression follows the overview in Diaconis and Chatterjee (2011), focusing
on directed graphs. For a more detailed introduction to graph limits, see Lovasz (2012),
Borgs et al. (2008), and Lovasz and Szegedy (2007). Most of the theory is developed for
dense graphs, but there are several results for sparse graphs. The model presented here
generates a dense graph, therefore we present only the relevant theory.

Consider a sequence of simple directed graphs Gn, where the number of nodes n tends to
infinity. Let |hom(H,G)| denote the number of homomorphisms of simple directed graph H
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into G. An homomorphism is an arc-preserving map from the set of vertices V (H) of H to
the set of vertices V (G) of G.49 For the graph limits we are interested in the homomorphism
densities of the form

t(H,G) =
|hom(H,G)|
|V (G)||V (H)|

Intuitively, t(H,G) is the probability that a random mapping V (H)→ V (G) is a homo-
morphism. We are interested in the behavior of t(H,Gn) when n → ∞. In particular we
want to characterize the limit object t(H), for any simple graph H. The work of Lovasz,
(see Lovasz (2012) for an extensive overview) provides the limit object for this problem. Let
h ∈ W be a function in the space W of all measurable functions h : [0, 1]2 → [0, 1]. This
slightly differs from the original paper of Diaconis and Chatterjee (2011) because we are
considering directed graphs, therefore we do not require the function h to be symmetric. For
comparison with the original formulation, let Wo denote the set of all measurable functions
h : [0, 1]2 → [0, 1] such that h(x, y) = h(y, x).

The existence of such limit objects and the characterization for directed graphs is con-
tained in Boeckner (2013) and extends the usual formulation for undirected graphs. If H is a
simple directed graph with k vertices (i.e. V (H) = {1, 2, ..., k}) the limit object for t(H,Gn)
is

t(H, h) =

∫
[0,1]k

∏
(i,j)∈E(H)

h(xi, xj)dx1 · · · dxk

where E(H) is the set of directed edges of H. For example, if we are interested in
homorphisms of a directed edge, the homomorphism density is

t(H,G) =
|hom(H,G)|
|V (G)||V (H)| =

∑
i

∑
j gij

n2

and the limit object is

t(H, h) =

∫
[0,1]k

∏
(i,j)∈E(H)

h(xi, xj)dx1 · · · dxk =
∫ 1

0

∫ 1

0

h(x, y)dxdy

If we are interested in the indirect links as in our model, we have

t(H,G) =
|hom(H,G)|
|V (G)||V (H)| =

∑
i

∑
j

∑
k gijgjk

n3

with limit object

t(H, h) =

∫
[0,1]k

∏
(i,j)∈E(H)

h(xi, xj)dx1 · · · dxk =
∫ 1

0

∫ 1

0

∫ 1

0

h(x, y)h(y, z)dxdydz

49An important difference between homomorphisms for undirected graphs and directed graphs is that in
the latter class of models, the existence of homomorphisms is not guaranteed. See Lovasz (2012) for some
additional details.
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A sequence of graphs {Gn}n≥1 converges to h if for every simple directed graph H

lim
n→∞

t(H,Gn) = t(H, h)

The intuitive interpretation of this theory is simple: when n becomes large, we rescale the
vertices to a continuum interval [0, 1]; and h(x, y) is the probability that there is a directed
edge from x to y. The limit object h ∈ W is called graphon. For any finite graph G with
vertex set {1, ..., n} we can always define the graph limit representation fG as

fG(x, y) =

{
1 if (�nx� , �ny�) is a directed edge of G

0 otherwise

where the symbol �a� indicates the ceiling of a, i.e. the smallest integer greater than or
equal to a.

To study convergence in the space W of the functions h, we need to define a metric. We
use the cut distance

d�(f, g) ≡ sup
S,T⊆[0,1]

∣∣∣∣∫
S×T

[f(x, y)− g(x, y)] dxdy

∣∣∣∣
where f and g are functions inW . However, there is some non-trivial complication in the

topology induced by the cut metric. To solve this complication, the usual approach is to work
with a suitably defined quotient space W̃ . We introduce an equivalence relation inW : f ∼ g
if f(x, y) = gσ(x, y) = g(σx, σy) for some measure preserving bijection σ : [0, 1]→ [0, 1]. We

will use h̃ to denote the equivalence class of h in (W , d�). Since d� is invariant under σ, we

can define a distance on the quotient space W̃ as

δ�

(
f̃ , g̃

)
≡ inf

σ
d�(f, gσ) = inf

σ
d�(fσ, g) = inf

σ1,σ2

d� (fσ1 , gσ2)

This makes
(
W̃ , δ�

)
a metric space. with several nice properties: it is compact and the

homomorphism densities t(H, h) are continuous functions on it. We associate fG to any

finite graph G and we have G̃ = τfG = f̃G ∈ W̃ , where τ is a mapping, τ : f → f̃ . For
completeness, we prove the compactness of the metric space, which is crucial for some of the
following proofs.

LEMMA 5 The metric space
(
W̃ , δ�

)
is compact.

Proof. The proof follows similar steps as in Theorem 5.1 of Lovasz and Szegedy (2007).
For every function h ∈ W and a partition P = {P1, P2, ..., Pk} of [0, 1] into measurable sets,
we define hP : [0, 1]2 → [0, 1] to be the stepfunction obtained from h by replacing its value
at (x, y) ∈ Pi × Pj by the average of h over Pi × Pj.

Let h1, h2, ... be a sequence of functions inW . We need to construct a subsequence that
has limit in W̃ . According to Lemmas 3.1.20 and 3.1.21 in Boeckner (2013), we can create
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a partition Pn,k = {P1,n,k, ..., Pmk,n,k} of [0, 1] for every n and k. This partition corresponds
to a step-function hn,k = hPn,k

∈ W , such that:

1. δ�(hn, hn,k) ≤ 1/k

2. |Pn,k| = mk (where mk only depends on k)

3. the partition Pn,k+1 refines the partition Pn,k for every k

Notice that since δ�(hn, hn,k) ≤ 1/k, we can re-arrange the range of hn,k so that all the steps
of the function are intervals. Select a subsequence of hn such that the length of the i-th
interval Pi,n,1 of hn,1 converges for every i as n → ∞; and the value hn,1 on Pi,n,1 × Pj,n,1

also converges for every i and j as n → ∞. Hence, the sequence hn,1 converges to a limit
almost everywhere. Let’s call the limit U1: notice that U1 is also a step-function with m1

steps (that are themselves intervals). We can repeat this procedure for k = 2, 3, ...We obtain
subsequences for which hn,k → Uk almost everywhere, and Uk is a step-function with mk

steps.
We know that for every k < l, the partition Pn,l is a refinement of partition Pn,k. As a

consequence, the partition into the steps of hn,l is a refinement of the partition into the steps
of hn,k. Clearly, the same relation must hold for Ul and Uk, i.e. the partition into the steps
of Ul is a refinement of the partition into the steps of Uk. By construction of hP , the function
hn,k can be obtained from hn,l by averaging its value over each step. As a consequence, the
same holds for Ul and Uk.

It is shown in the proof of Lemma 3.1.21 in Boeckner (2013) that if we pick a random
point (X, Y ) uniformly over [0, 1]2 the sequence U1(X, Y ), U2(X, Y ), ... is martingale, and
each element of the sequence is bounded. Using the Martingale Convergence Theorem we
can show that the sequence U1(X, Y ), U2(X, Y ), ... converges almost everywhere. We define
this limit U .

The rest of the proof is the same as in Theorem 5.1 of Lovasz and Szegedy (2007). Fix
an ε > 0. Then there exists a k > 3/ε, which we denote as K, such that ‖U − Uk‖1 < ε/3.
Fix k = K: then there is an N , such that for all n ≥ N we have ‖Uk − hn,k‖1 < ε/3. Then
we finally have

δ�(U, hn) ≤ δ�(U,Uk) + δ�(Uk, hn,k) + δ�(hn,k, hn)

≤ ‖U − Uk‖1 + ‖Uk − hn,k‖1 + δ�(hn,k, hn)

≤ ε

3
+
ε

3
+
ε

3
= ε

As a consequence hn → U in the metric space
(
W̃ , δ�

)
.
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D.2 A crash course on large deviations for random graphs

D.2.1 Undirected graphs (Original Chatterjee and Varadhan (2011) formula-
tion)

Chatterjee and Varadhan (2011) developed a large deviation principle for the undirected
Erdos-Renyi graph. Let G(n, p) indicate the the random undirected graph with n vertices
where each link is formed independently with probability p. Define a function Ip : [0, 1]→ R

Ip(u) ≡
1

2
u log

u

p
+

1

2
(1− u) log

1− u

1− p
(47)

whose domain is easily extended to Wo as

Ip(h) =

∫ 1

0

∫ 1

0

Ip (h(x, y)) dxdy

=
1

2

∫ 1

0

∫ 1

0

[
h(x, y) log

h(x, y)

p
+ (1− h(x, y)) log

1− h(x, y)

p

]
dxdy (48)

Analogously we can define Ip on W̃o as Ip(h̃) ≡ Ip(h). The graph G(n, p) induces a
probability distribution Pn,p on Wo, because we can use the map G→ fG; and it induces a

probability distribution P̃n,p on W̃o according to the map G → fG → f̃G = G̃. Chatterjee
and Varadhan (2011) state a large deviation principle for the Erdos Renyi random graph in

both spaces (Wo, d�) and (W̃o, δ�).
We report the main result of Chatterjee and Varadhan (2011) for completeness.

THEOREM 7 (Large deviation principle for Erdos-Renyi graph, Chatterjee and Varadhan

(2011)). For each fixed p ∈ (0, 1), the sequence P̃n,p obeys a large deviation principle in the

space (W̃o, δ�) with rate function Ip(h) defined in (48). For any closed set F̃ ⊆ W̃

lim sup
n→∞

1

n2
log P̃n,p(F̃ ) ≤ − inf

h̃∈F̃
Ip(h̃)

and for any open set Ũ ⊆ W̃,

lim inf
n→∞

1

n2
log P̃n,p(Ũ) ≥ − inf

h̃∈Ũ
Ip(h̃)

D.2.2 Directed graphs

First, we consider the extension of Theorem 7 to directed Erdos-Renyi graphs. Let Gd(n, p)
indicate the random directed graph with n vertices where each arc is formed independently
with probability p. Define a function Ip : [0, 1]→ R
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Ip(u) ≡ u log
u

p
+ (1− u) log

1− u

1− p
(49)

whose domain is easily extended to W as

Ip(h) =

∫ 1

0

∫ 1

0

Ip (h(x, y)) dxdy

=

∫ 1

0

∫ 1

0

[
h(x, y) log

h(x, y)

p
+ (1− h(x, y)) log

1− h(x, y)

p

]
dxdy (50)

Analogously we can define Ip on W̃ as Ip(h̃) ≡ Ip(h). Chatterjee and Varadhan (2011)

(see their Lemma 2.1) prove that this function is lower semicontinuous on W̃ under the
metric δ�.

The graph Gd(n, p) induces a probability distribution Pn,p onW , because we can use the

map G → fG; and it induces a probability distribution P̃n,p on W̃ according to the map

G→ fG → f̃G = G̃. The large deviation principle for this case is presented in the following
theorem.

THEOREM 8 (Large deviation principle for directed Erdos-Renyi graph) For each fixed

p ∈ (0, 1), the sequence P̃n,p obeys a large deviation principle in the space (W̃ , δ�) with rate

function Ip(h) defined in (50). For any closed set F̃ ⊆ W̃

lim sup
n→∞

1

n2
log P̃n,p(F̃ ) ≤ − inf

h̃∈F̃
Ip(h̃)

and for any open set Ũ ⊆ W̃,

lim inf
n→∞

1

n2
log P̃n,p(Ũ) ≥ − inf

h̃∈Ũ
Ip(h̃)

Proof. The proof follows the same steps as in the original theorem for undirected graphs
in Chatterjee and Varadhan (2011), but substituting the new rate function in (50). For
the upper bound, we define pi,j as in the original paper, but we do not require symmetry.
We use slightly different regularity conditions, as provided in Boeckner (2013), because of
the directed nature of the graph. In particular we use Lemmas 3.1.14, 3.1.20 and 3.1.21
in Boeckner (2013). With these small changes, Lemma 2.4, 2.5 and 2.6 in Chatterjee and
Varadhan (2011) hold. The proof follows the same steps as in the undirected case. For the
lower bound, the proof is identical, without the requirement of simmetry.
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D.3 Undirected ERGM (Chatterjee and Diaconis 2013)

Let T : W̃o → R be a bounded continuous function in space (W̃o, δ�). For a given n the
probability function for the graphs is given by

πn(G) = exp
{
n2

[
T (G̃)− ψn

]}
where G̃ is defined on W̃o according to the map G→ fG → f̃G = G̃, and ψn is a constant

defined as

ψn =
1

n2
log

∑
G∈Gn

exp
{
n2

[
T (G̃)

]}
(51)

The rescaling by n2 is necessary to guarantee that the limits for n→∞ converge to some
non-trivial quantity. We are interested in finding the value of ψn as n → ∞. We define a
rate function

I(u) ≡ 1

2
u log u+

1

2
(1− u) log(1− u) (52)

which we extend to W̃o as

I(h̃) ≡ 1

2

∫ 1

0

∫ 1

0

I(h(x, y))dxdy

I(h̃) ≡ 1

2

∫ 1

0

∫ 1

0

I(h(x, y))dxdy

=
1

2

∫ 1

0

∫ 1

0

[h(x, y) log h(x, y) + (1− h(x, y)) log(1− h(x, y))] dxdy (53)

THEOREM 9 (Theorem 3.1 for ERGM in Chatterjee-Diaconis 2013). If T : W̃o → R is a
bounded continuous function and ψn and I are defined as in (51) and (53) respectively, then

ψ ≡ lim
n→∞

ψn = sup
h̃∈W̃o

{
T (h̃)− I(h̃)

}

D.4 Directed ERGM

Let T : W̃ → R be a bounded continuous function in space (W̃ , δ�). In our model T
corresponds to the potential function Q of the network formation game after rescaling some
of the utility components (see below for details and examples). In what follows, we omit
the dependence on the parameters to simplify notation. For a given n, the probability of
observing network G is given by
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πn(G) = exp
{
n2

[
T (G̃)− ψn

]}
where G̃ is defined on W̃ according to the map G → fG → f̃G = G̃, and ψn is a

normalization constant defined as

ψn =
1

n2
log

∑
G∈Gn

exp
{
n2

[
T (G̃)

]}
(54)

This is the same as the stationary distribution of our model, after some re-scaling of the
utility functions. The rescaling by n2 is necessary to guarantee that the limits for n → ∞
converge to some non-trivial quantity. We are interested in finding the value of ψn as n→∞,
using the same line of reasoning in Theorem 3.1 of Diaconis and Chatterjee (2011). We define
a rate function

I(u) ≡ u log u+ (1− u) log(1− u) (55)

which we extend to W̃ as

I(h̃) ≡
∫ 1

0

∫ 1

0

I(h(x, y))dxdy

=

∫ 1

0

∫ 1

0

[h(x, y) log h(x, y) + (1− h(x, y)) log(1− h(x, y))] dxdy (56)

THEOREM 10 (Asymptotic log-constant for Directed ERGM). If T : W̃ → R is a bounded
continuous function and ψn and I are defined as in (54) and (56) respectively, then

ψ ≡ lim
n→∞

ψn = sup
h̃∈W̃

{
T (h̃)− I(h̃)

}
(57)

Proof. The proof of this result follows closely the proof of Theorem 3.1 in Diaconis and
Chatterjee (2011), with minimal changes. Let Ã denote a Borel set Ã ⊆ W̃ . For each n let

Ãn be the (finite) set

Ãn ≡
{
h̃ ∈ Ã such that h̃ = G̃ for some G ∈ Gn

}
Let Pn,p be the probability distribution of the directed random graph Gd(n, p) defined above.
We have

|Ãn| = 2n(n−1)Pn,1/2(Ãn) = 2n(n−1)Pn,1/2(Ã)

We can use the result in Theorem 8 to show that for a closed subset F̃ of W̃ we have

lim sup
n→∞

1

n2
log P̃n,1/2(F̃n) = lim sup

n→∞

1

n2

[
log |F̃n| − n(n− 1) log 2

]
= lim sup

n→∞

1

n2
log |F̃n| − log 2

≤ − inf
h̃∈F̃

I1/2(h̃)
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Therefore we obtain

lim sup
n→∞

1

n2
log |F̃n| ≤ log 2− inf

h̃∈F̃
I1/2(h̃)

= inf
h̃∈F̃

I(h̃)

Similarly for an open subset Ũ of W̃ we have

lim inf
n→∞

1

n2
log |Ũn| ≥ log 2− inf

h̃∈Ũ
I1/2(h̃)

= inf
h̃∈Ũ

I(h̃)

The rest of the proof is equivalent to the undirected case (see proof of Theorem 3.1 in
Diaconis and Chatterjee (2011).

The result of Theorem 10 shows that as n grows large we can compute the normalizing
constant of the ERGM as the result of a variational problem. The main issue is that the
variational problem does not have a closed-form solution for most cases. However, there are
some special cases in which the solution can be computed explicitly. Let’s consider a model
with utility from directed links and friends of friends. Using the notation developed above,
we are considering a model with function T

T (G̃) = θ1

∑n
i=1

∑n
j=1 gij

n2
+ θ2

∑n
i=1

∑n
j=1

∑n
k=1 gijgjk

n3
(58)

For any h ∈ W we can define

T (h) = θ1t(H1, h) + θ2t(H2, h)

where the limit objects are

t(H1, h) =

∫ ∫
[0,1]2

h(x, y)dxdy

and

t(H2, h) =

∫ ∫ ∫
[0,1]3

h(x, y)h(y, z)dxdydz

We will assume that θ2 > 0. In this case there is an explicit solution of the variational
problem. The following theorem provides a characterization of the variational problem along
the same lines of Radin and Yin (2013) and Aristoff and Zhu (2014).
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THEOREM 11 Let θ2 > 0 and T be defined as in (58) above. Then

lim
n→∞

ψn = ψ = sup
μ∈[0,1]

{
θ1μ+ θ2μ

2 − μ log μ− (1− μ) log(1− μ)
}

1. If θ2 ≤ 2, the maximization problem has a unique maximizer μ∗ ∈ [0, 1]

2. If θ2 > 2 and θ1 ≥ −2 then there is a unique maximizer μ∗ > 0.5

3. If θ2 > 2 and θ1 < −2, then there is a V-shaped region of the parameters such that

(a) inside the V-shaped region, the maximization problem has two local maximizers
μ∗1 < 0.5 < μ∗2

(b) outside the V-shaped region, the maximization problem has a unique maximizer
μ∗

4. For any θ1 inside the V-shaped region, there exists a θ2 = q(θ1), such that the two
maximizers are both global, i.e. �(μ∗1) = �(μ∗2).

Proof. We need to use the Holder inequality: if p, q are such that 1/p + 1/q = 1, then
for any measurable functions f, g defined on the same domain∫

f(x)g(x)dx ≤
(∫

f(x)pdx

) 1
p
(∫

g(x)qdx

) 1
q

In particular we have in our case

t(H2, h) =

∫ ∫ ∫
[0,1]3

h(x, y)h(y, z)dxdydz

≤
(∫ ∫ ∫

[0,1]3
h(x, y)2dxdydz

) 1
2
(∫ ∫ ∫

[0,1]3
h(y, z)2dxdydz

) 1
2

=

(∫ ∫
[0,1]2

h(x, y)2
[∫

[0,1]

dz

]
dxdy

) 1
2
(∫ ∫

[0,1]2
h(y, z)2

[∫
[0,1]

dx

]
dydz

) 1
2

=

(∫ ∫
[0,1]2

h(x, y)2dxdy

) 1
2
(∫ ∫

[0,1]2
h(y, z)2dydz

) 1
2

=

(∫ ∫
[0,1]2

h(x, y)2dxdy

) 1
2
(∫ ∫

[0,1]2
h(x, y)2dxdy

) 1
2

=

∫ ∫
[0,1]2

h(x, y)2dxdy

We have assumed that θ2 > 0. Given the results of the Holder’s inequality we can say
that
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T (h) = θ1t(H1, h) + θ2t(H1, h)

= θ1

∫ ∫
[0,1]2

h(x, y)dxdy + θ2

∫ ∫ ∫
[0,1]3

h(x, y)h(y, z)dxdydz

≤ θ1

∫ ∫
[0,1]2

h(x, y)dxdy + θ2

∫ ∫
[0,1]2

h(x, y)2dxdy

Suppose h(x, y) = μ is a constant. Then the equality holds and if μ ∈ [0, 1] solves the
variational problem

lim
n→∞

ψn(θ) = ψ(θ) = sup
μ∈[0,1]

θ1μ+ θ2μ
2 − μ log μ− (1− μ) log(1− μ)

then h(x, y) = μ is the limit graphon.
To show that this is the only solution, let’s consider the maximization problem again.

For h(x, y) to be a solution, we need

T (h) = θ1

∫ ∫
[0,1]2

h(x, y)dxdy + θ2

∫ ∫
[0,1]2

h(x, y)2dxdy

In other words, the Holder inequality must hold with equality, i.e. we need

t(H2, h) =

∫ ∫ ∫
[0,1]3

h(x, y)h(y, z)dxdydz

=

∫ ∫
[0,1]2

h(x, y)2dxdy

This implies that
h(x, y) = h(y, z)

for almost all (x, y, z). In particular, we have that given x and y, μ = h(x, y) = h(y, z)
for any z ∈ [0, 1] because the left-hand-side does not depend on z. Given y and z, we
have μ′ = h(y, z) = h(x, y) for any x ∈ [0, 1] because the left-hand-side does not depend
on x. For x = y and z = y we have μ = h(y, y) = h(y, y) = μ′. In addition, we have
h(x, y) = h(y, x) = μ = h(x, z). It follows that h(x, y) = μ almost everywhere.

It follows that T (h) = θ1μ+ θ2μ
2 and I(μ) = μ log μ+ (1− μ) log(1− μ), so we get

lim
n→∞

ψn = ψ = sup
μ∈[0,1]

{
θ1μ+ θ2μ

2 − μ log μ− (1− μ) log(1− μ)
}

We can now characterize the maximization problem above, to obtain the rest of the
results. The analysis follows the same steps of Radin and Yin (2013), Aristoff and Zhu
(2014). The first order and second order conditions are
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�′(μ, θ1, θ2) = θ1 + 2θ2μ− log
μ

1− μ
(59)

�′′(μ, θ1, θ2) = 2θ2 −
1

μ(1− μ)
(60)

Let’s study the concavity of �(μ; θ1, θ2). We have that �′′(μ, θ1, θ2) ≤ 0 when

θ2 ≤
1

2μ(1− μ)

Notice that 2 ≤ 1
2μ(1−μ) ≤ ∞ for any μ ∈ [0, 1]; and 1

2μ(1−μ) = 2 if μ = 0.5. As a

consequence, the function �(μ; θ1, θ2) is concave on the whole interval [0, 1] for θ2 ≤ 2.
When θ2 > 2, the second derivative can be positive or negative, with inflection points

denoted as a and b: notice that a < 0.5 < b.50

Consider the first derivative �′(μ, θ1, θ2). For θ2 ≤ 2, the derivative is decreasing for any
μ, because �′′(μ, θ1, θ2) ≤ 0 for any μ ∈ [0, 1].

For θ2 > 2 then (see picture of parabola), it is decreasing in [0, a), increasing in (a, b)
and decreasing in (b, 1].
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θ2 = 4

θ2 = 2

a b

The function �(μ, θ1, θ2) is bounded and continuous for any θ and μ ∈ [0, 1], and we could
find the interior maximizers by studying the first and second derivative. If we consider the
case θ2 ≤ 2, the derivative �′(μ, θ1, θ2) is decreasing on the whole interval [0, 1]. It is easy to

50This is because, when θ2 > 2, we have �′′(μ, θ1, θ2) ≤ 0 when θ2 ≤ 1
2μ(1−μ) or 2μ(1 − μ) ≤ 1

θ2
. The

equality is realized at two intersections of the horizontal line 1/θ2 with the parabola 2μ(1− μ). We call the
intersections 1

θ2
= 2μ(1− μ), respectively a and b.
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show that �′(0) =∞ and �′(1) = −∞. Therefore, when θ2 ≤ 2, there is only one maximizer
μ∗ that solves �′(μ, θ1, θ2) = 0.

If θ2 > 2, then we have 3 possible cases. We know that in this region �′(μ, θ1, θ2) is
decreasing in [0, a), increasing in (a, b) and decreasing in (b, 1].

1. If �′(a, θ1, θ2) ≥ 0, then there is a unique maximizer μ∗ > b

2. If �′(b, θ1, θ2) ≤ 0, then there is a unique maximizer μ∗ < a

3. If �′(a, θ1, θ2) < 0 < �′(b, θ1, θ2), then there are 2 local maximizers μ∗1 < a < b < μ∗2

The three cases are shown in the following pictures, where we plot �′(μ, θ1, θ2) against μ for
several values of θ1 and for a fixed θ2 = 4 > 2.
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We indicate the maximizer with μ∗ when it is unique, and with μ∗1, μ
∗
2 when there are

two.
Let’s consider the first case, with �′(a, θ1, θ2) ≥ 0. To compute �′(a, θ1, θ2), notice that

θ2 =
1

2a(1−a) . Substituting in �′(a, θ1, θ2) we obtain

�′(a, θ1, θ2) = θ1 +
1

1− a
− log

a

1− a

and analogously for θ2 =
1

2b(1−b) we have

�′(b, θ1, θ2) = θ1 +
1

1− b
− log

b

1− b

So �′(a, θ1, θ2) ≥ 0 implies

θ1 ≥ log
a

1− a
− 1

1− a

The function log a
1−a − 1

1−a has a maximum at −2 and therefore we have 51

�′(a, θ1, θ2) ≥ 0⇔ θ1 ≥ −2
51Taking derivative 1

a + 1
1−a − 1

(1−a)2 = 0, we obtain the maximizer a∗ = 0.5. The function is increasing

in [0, 0.5) and decreasing in (0.5, 1]. The maximum is therefore at −2.
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When the above condition is satisfied, there is a unique maximizer, μ∗ > b, as shown in
the picture on the left.

When θ1 < −2 it is easier to draw a picture of the function log a
1−a − 1

1−a , shown below.
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θ1 = −3

ρ1(θ1) ρ2(θ1)

Notice that when θ1 < −2 there are two intersections of the function and the horizontal
line y = θ1 (in the picture θ1 = −3). We denote the intersections φ1(θ1) and φ2(θ1).
By construction, we know that a < 0.5 < b. By looking at the picture, it is clear that
�′(a, θ1, θ2) > 0 if a < φ1(θ1) and �′(a, θ1, θ2) < 0 if a > φ1(θ1). Analogously, we have
�′(b, θ1, θ2) > 0 if b > φ2(θ1) and �

′(b, θ1, θ2) < 0 if b < φ2(θ1).
For any θ1 < −2, there exist φ1(θ1) and φ2(θ1) which are the intersection of the function

y = log
(

x
1−x

)
− 1

1−x with the line y = θ1. Since the function is continuous, monotonic
increasing in [0, 0.5) and monotonic decreasing in (0.5, 1] it follows that φ1(θ1) and φ2(θ1)
are both continuous in θ1. In addition, φ1(θ1) is increasing in θ1 and φ2(θ1) is decreasing in
θ1. It’s trivial to show that when θ1 decreases, φ1(θ1) converges to 0 while φ2(θ1) converges
to 1.

Consider the case in which �′(a, θ1, θ2) < 0 < �′(b, θ1, θ2) with two maximizers. Define
the function

s(μ) ≡ 1

2μ(1− μ)

Since �′(a, θ1, θ2) < 0 we have a > φ1(θ1), which implies s(a) < s(φ1(θ1)). Therefore
θ2 < s(φ1(θ1)) =

1
2φ1(θ1)(1−φ1(θ1))

.

Since �′(b, θ1, θ2) > 0 we have b > φ2(θ1), which implies s(b) > s(φ2(θ1)). Therefore
θ2 > s(φ2(θ1)) =

1
2φ2(θ1)(1−φ2(θ1))

.

Notice that s(φ1(θ1)) > s(φ2(θ1)) for any (θ1, θ2) in this region of the parameters (see
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picture below).
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The areas are shown in the following picture
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Within the V-shaped region there are 2 solutions to the maximization problem, i.e. two
local maxima. Also, it is trivial to show that there exists a function q, such that for θ2 = q(θ1)
both solutions are global maxima. Indeed, the two local maxima are both global maxima
if �(μ∗2, θ1, θ2) − �(μ∗1, θ1, θ2) = 0. The latter difference is negative when μ∗1 is the global
maximizer, while it is positive when μ∗2 is the global maximizer. Therefeore for a given value
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of θ1 there must be a unique θ2 such that s(φ1(θ1)) > θ2 > s(φ2(θ1)) such that both μ∗1 and
μ∗2 are global maximizer. Let’s indicate this value of θ2 = q(θ1).
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Notice that the difference �(μ∗2, θ1, θ2)−�(μ∗1, θ1, θ2), corresponds to the difference between
the positive and negative areas between μ∗1and μ

∗
2 in the graph above, i.e. (let μ̂ indicate the

intersection of �′(μ, θ1, θ2) and the x-axis between μ∗1and μ
∗
2)

�(μ∗2, θ1, θ2)− �(μ∗1, θ1, θ2) =

∫ μ∗
2

0

�′(μ, θ1, θ2)dμ−
∫ μ∗

1

0

�′(μ, θ1, θ2)dμ

=

∫ μ∗
1

0

�′(μ, θ1, θ2)dμ+

∫ μ̂

μ∗
1

�′(μ, θ1, θ2)dμ

+

∫ μ∗
2

μ̂

�′(μ, θ1, θ2)dμ−
∫ μ∗

1

0

�′(μ, θ1, θ2)dμ

=

∫ μ̂

μ∗
1

�′(μ, θ1, θ2)dμ+

∫ μ∗
2

μ̂

�′(μ, θ1, θ2)dμ

When this difference is equal to zero, it means that the positive area and the negative area
are equivalent and they cancel each other out. If we increase θ1, then the curve �′(μ, θ1, θ2)
will shift upwards and the negative area will decrease, therefore we have to decrease θ2 to
counterbalance this effect. The opposite happens when we decrease θ1. Therefore, q(θ1) is a
downward-sloping curve and it is continuous because of the continuity of �′(μ, θ1, θ2). This
completes the proof.

This theoretical result is confirmed by simulations.
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It turns out that there is a more general result. If the homomorphism density t(H2, G)
associated with the parameter θ2 is such that the resulting variational problem can be shown
to be

ψ = sup
μ∈[0,1]

�(μ, α, β) = sup
μ∈[0,1]

{αμ+ βμr − μ lnμ− (1− μ) ln(1− μ)}

where we assume r ≥ 2, then the same characterization applies, as shown in the next
theorem. For example, this is the case if we consider

t(H2, G) =

∑
i

∑
j

∑
k gijgjkgki

n3

with r = 3; or if we consider

t(H2, G) =

∑
i

∑
j

∑
k

∑
l gijgjkgklgli

n4

with r = 4.
The next Lemma, provides conditions under which the network statistics can be upper-

bounded by the power of the graphon. For practical purposes this condition is necessary to
be able to re-write the variational problem as a calculus problem, as shown in the Theorems
below.

LEMMA 6 For the following homomorphism densities:

t(H,G) =

∑
i

∑
j

∑
k gijgjkgki

n3
(61)

t(H,G) =

∑n
i=1

∑n
j=1

∑n
k=1 gijgjk

n3
(62)

t(H,G) =

∑
i

∑
j

∑
k

∑
l gijgjkgklgli

n4
(63)

t(H,G) =
1

nr

∑
1≤i,j1,j2,..,jr≤n

gij1gj1j2 · ·gjri (64)

t(H,G) =
1

nr−1
∑

1≤i,j1,j2,..,jr≤n
gij1gij2 · ·gijr (65)

the following property holds

t(H, h) ≤
∫ 1

0

∫ 1

0

h(x, y)e(H)dxdy

where e(H) is the number of directed links included in the subgraph H.
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Proof. For the homomorphism density (61) the value e(H) = 3 and the limit object is

t(H, h) =

∫
[0,1]3

h(x, y)h(y, z)h(z, x)dxdydz

Using the Holder inequality and some algebra, we obtain

t(H, h) =

∫
[0,1]3

h(x, y)h(y, z)h(z, x)dxdydz

≤
(∫

[0,1]3
h(x, y)3dxdydz

) 1
3
(∫

[0,1]3
h(y, z)3dxdydz

) 1
3
(∫

[0,1]3
h(z, x)3dxdydz

) 1
3

=

(∫
[0,1]2

h(x, y)3dxdy

∫ 1

0

dz

) 1
3
(∫

[0,1]2
h(y, z)3dydz

∫ 1

0

dx

) 1
3
(∫

[0,1]2
h(z, x)3dxdz

∫ 1

0

dy

) 1
3

=

(∫
[0,1]2

h(x, y)3dxdy

) 1
3
(∫

[0,1]2
h(y, z)3dydz

) 1
3
(∫

[0,1]2
h(z, x)3dxdz

) 1
3

=

(∫
[0,1]2

h(x, y)3dxdy

) 1
3
(∫

[0,1]2
h(x, y)3dxdy

) 1
3
(∫

[0,1]2
h(x, y)3dxdy

) 1
3

=

∫
[0,1]2

h(x, y)3dxdy =

∫ 1

0

∫ 1

0

h(x, y)e(H)dxdy

For the homomorphism density in (62), e(H) = 2 and using Holder inequality we get

t(H, h) =

∫ ∫ ∫
[0,1]3

h(x, y)h(y, z)dxdydz

≤
(∫ ∫ ∫

[0,1]3
h(x, y)2dxdydz

) 1
2
(∫ ∫ ∫

[0,1]3
h(y, z)2dxdydz

) 1
2

=

(∫ ∫
[0,1]2

h(x, y)2
[∫

[0,1]

dz

]
dxdy

) 1
2
(∫ ∫

[0,1]2
h(y, z)2

[∫
[0,1]

dx

]
dydz

) 1
2

=

(∫ ∫
[0,1]2

h(x, y)2dxdy

) 1
2
(∫ ∫

[0,1]2
h(y, z)2dydz

) 1
2

=

(∫ ∫
[0,1]2

h(x, y)2dxdy

) 1
2
(∫ ∫

[0,1]2
h(x, y)2dxdy

) 1
2

=

∫ ∫
[0,1]2

h(x, y)2dxdy
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For the homomorphism density in (64), e(H) = r and using Holder inequality we get

t(H, h) =

∫
[0,1]r

h(xi, xj1)h(xj1 , xj2) · · · h(xjr , xi)dxidxj1 · · · dxjr

≤
(∫

[0,1]r
h(xi, xj1)

rdxidxj1 · · · dxjr
) 1

r
(∫

[0,1]r
h(xj1 , xj2)

rdxidxj1 · · · dxjr
) 1

r

· · ·
(∫

[0,1]r
h(xjr , xi)

rdxidxj1 · · · dxjr
) 1

r

=

(∫
[0,1]2

h(xi, xj1)
rdxidxj1

∫
[0,1]r−2

dxj2 · · · dxjr
) 1

r

×
(∫

[0,1]2
h(xj1 , xj2)

rdxj1dxj2

∫
[0,1]r−2

dxidxj3 · · · dxjr
) 1

r

· · ·
(∫

[0,1]2
h(xjr , xi)

rdxjrdxi

∫
[0,1]r−2

dxj1 · · · dxjr−1

) 1
r

=

(∫
[0,1]2

h(x, y)rdxdy

) 1
r
(∫

[0,1]2
h(x, y)rdxdy

) 1
r

· · ·
(∫

[0,1]2
h(x, y)rdxdy

) 1
r

=

∫
[0,1]2

h(x, y)rdxdy =

∫ 1

0

∫ 1

0

h(x, y)e(H)dxdy
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For the homomorphism density in (65), e(H) = r and using Holder inequality we get

t(H, h) =

∫
[0,1]r

h(xi, xj1)h(xi, xj2) · · · h(xi, xjr)dxidxj1 · · · dxjr

≤
(∫

[0,1]r
h(xi, xj1)

rdxidxj1 · · · dxjr
) 1

r
(∫

[0,1]r
h(xi, xj2)

rdxidxj1 · · · dxjr
) 1

r

· · ·
(∫

[0,1]r
h(xi, xjr)

rdxidxj1 · · · dxjr
) 1

r

=

(∫
[0,1]2

h(xi, xj1)
rdxidxj1

∫
[0,1]r−2

dxj2 · · · dxjr
) 1

r

×
(∫

[0,1]2
h(xi, xj2)

rdxidxj2

∫
[0,1]r−2

dxj1dxj3 · · · dxjr
) 1

r

· · ·
(∫

[0,1]2
h(xi, xjr)

rdxidxjr

∫
[0,1]r−2

dxj1 · · · dxjr−1

) 1
r

=

(∫
[0,1]2

h(x, y)rdxdy

) 1
r
(∫

[0,1]2
h(x, y)rdxdy

) 1
r

· · ·
(∫

[0,1]2
h(x, y)rdxdy

) 1
r

=

∫
[0,1]2

h(x, y)rdxdy =

∫ 1

0

∫ 1

0

h(x, y)e(H)dxdy

The following theorem uses the result of the Lemma 6 above, to show that the variational
problem can be solved explicitly as a one-variable calculus problem in special cases. This
result is very useful in studying the behavior of the model as the number of players grows large
and it provides a way to characterize the convergence of the sampling algorithms according
to the same argument of Bhamidi et al. (2011) (see more detail below).

THEOREM 12 Let β > 0. For the following models

T (G) = α

∑n
i=1

∑n
j=1 gij

n2
+ β

∑n
i=1

∑n
j=1

∑n
k=1 gijgjk

n3

T (G) = α

∑n
i=1

∑n
j=1 gij

n2
+ β

∑n
i=1

∑n
j=1

∑n
k=1 gijgjkgki

n3

T (G) = α

∑n
i=1

∑n
j=1 gij

n2
+ β

∑
1≤i,j1,j2,..,jr≤n gij1gj1j2 · ·gjri

nr

T (G) = α

∑n
i=1

∑n
j=1 gij

n2
+ β

∑
1≤i,j1,j2,..,jr≤n gij1gij2 · ·gijr

nr−1
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the log-partitition asymptotic variational problem becomes a calculus problem. Let �(μ, α, β)
be the following function

�(μ, α, β) = αμ+ βμr − μ log μ− (1− μ) log(1− μ)

Then, as n→∞, the log-partition is the solution of the following

lim
n→∞

ψn(θ) = ψ(θ) = sup
μ∈[0,1]

�(μ, α, β)

For the following model with β > 0 and γ > 0

T (G) = α

∑n
i=1

∑n
j=1 gij

n2
+ β

∑n
i=1

∑n
j=1

∑n
k=1 gijgjk

n3
+ γ

∑n
i=1

∑n
j=1

∑n
k=1 gijgjkgki

n3

the log-partitition asymptotic variational problem is

lim
n→∞

ψn(θ) = ψ(θ) = sup
μ∈[0,1]

{
αμ+ βμ2 + γμ3 − μ log μ− (1− μ) log(1− μ)

}
Proof. Consider the first model. We have assumed that β > 0. Given the results of the

Holder’s inequality in Lemma 6 we can say that

T (h) = αt(H1, h) + βt(H2, h)

≤ α

∫ ∫
[0,1]2

h(x, y)dxdy + β

∫ ∫
[0,1]2

h(x, y)2dxdy

Suppose h(x, y) = μ is a constant. Then the equality holds and if μ ∈ [0, 1] solves the
variational problem

lim
n→∞

ψn(θ) = ψ(θ) = sup
μ∈[0,1]

αμ+ βμ2 − μ log μ− (1− μ) log(1− μ)

then h(x, y) = μ is the limit graphon.
To show that this is the only solution, let’s consider the maximization problem again.

For h(x, y) to be a solution, we need

T (h) = α

∫ ∫
[0,1]2

h(x, y)dxdy + β

∫ ∫
[0,1]2

h(x, y)2dxdy

In other words, the Holder inequality must hold with equality, i.e. we need

t(H2, h) =

∫ ∫ ∫
[0,1]3

h(x, y)h(y, z)dxdydz

=

∫ ∫
[0,1]2

h(x, y)2dxdy
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This implies that
h(x, y) = h(y, z)

for almost all (x, y, z). In particular, we have that given x and y, μ = h(x, y) = h(y, z)
for any z ∈ [0, 1] because the left-hand-side does not depend on z. Given y and z, we
have μ′ = h(y, z) = h(x, y) for any x ∈ [0, 1] because the left-hand-side does not depend
on x. For x = y and z = y we have μ = h(y, y) = h(y, y) = μ′. In addition, we have
h(x, y) = h(y, x) = μ = h(x, z). It follows that h(x, y) = μ almost everywhere.

It follows that T (h) = αμ+ βμ2 and I(μ) = μ log μ+ (1− μ) log(1− μ), so we get

lim
n→∞

ψn = ψ = sup
μ∈[0,1]

{
αμ+ βμ2 − μ log μ− (1− μ) log(1− μ)

}
The proof for the remaining models follows similar steps and reasoning and it is omitted

for brevity.
The next theorem contains a complete characterization of the maximization problem

considered in the previous theorem.

THEOREM 13 Assume that β > 0 and r ≥ 2. If the variational problem can be shown to
be

lim
n→∞

ψn(θ) = ψ(θ) = sup
μ∈[0,1]

{αμ+ βμr − μ log μ− (1− μ) log(1− μ)}

then we have

1. If β ≤ rr−1

(r−1)r , the maximization problem has a unique maximizer μ∗ ∈ [0, 1]

2. If β > rr−1

(r−1)r and α ≥ log(r − 1)− r
r−1 then there is a unique maximizer μ∗ > 0.5

3. If β > rr−1

(r−1)r and α < log(r − 1)− r
r−1 , then there is a V-shaped region of parameters

such that

(a) inside the V-shaped region, the maximization problem has two local maximizers
μ∗1 < 0.5 < μ∗2

(b) outside the V-shaped region, the maximization problem has a unique maximizer
μ∗

4. For any α inside the V-shaped region, there exists a β = ζ(α), such that the two
maximizers are both global, i.e. �(μ∗1) = �(μ∗2).

Proof. The first and second order conditions are

�′(μ, α, β) = α + βrμr−1 − ln

(
μ

1− μ

)
�′′(μ, α, β) = βr(r − 1)μr−2 − 1

μ(1− μ)
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The function �(μ, α, β) is concave if �′′(μ, α, β) < 0, i.e. when

β <
1

r(r − 1)μr−1(1− μ)
≡ s(μ)

The function s(μ) has a minimum at r
r−1 , where s(

r
r−1) =

rr−1

(r−1)r ; it is decreasing i, i.e.

�(μ∗1) = �(μ∗2)n the interval
[
0, r

r−1
)
and increasing in the interval

(
r

r−1 , 1
]
. Therefore the

function �(μ, α, β) is concave on the whole interval [0, 1] if β < rr−1

(r−1)r .
52 In this region, there

is a unique maximizer μ∗ of �(μ, α, β).
If β > rr−1

(r−1)r there are three possible cases. We know that in this region the second

derivative �′′(μ, α, β) can be positive or negative, with inflection points denoted as a and b,
found by solving the equation β = s(μ). An example for r = 3 and β = 4 is shown in the
figure below (notice that we are plotting the function 1/s(μ) against the line 1/β).

52Consider the function 1/s(μ) = r(r− 1)μr−1(1− μ) = r(r− 1)(μr−1 − μr). This function has derivative

∂[1/s(μ)]

∂μ
= r(r − 1)2μr−2 − r2(r − 1)μr−1 = r(r − 1)μr−2[(r − 1)− rμ]

∂2[1/s(μ)]

∂μ∂μ
= r(r − 1)2(r − 2)μr−3 − r2(r − 1)2μr−2 = r(r − 1)2μr−3[(r − 2)− rμ]

So solving the FOCs we obtain the maximizer of 1/s(μ)

r(r − 1)μr−2[(r − 1)− rμ] = 0⇔ μ =
r − 1

r

and the maximum is

1/s

(
r − 1

r

)
= r(r − 1)

(
r − 1

r

)r−1

(1− r − 1

r
) =

(r − 1)r

rr−1

Therefore the minimum of s(μ) is rr−1

(r−1)r .
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In particular, the first derivative �′(μ, α, β) is decreasing in [0, a), increasing in (a, b) and
decreasing in (b, 1].

1. If �′(a, α, β) ≥ 0, then there is a unique maximizer μ∗ > b

2. If �′(b, α, β) ≤ 0, then there is a unique maximizer μ∗ < a

3. If �′(a, α, β) < 0 < �′(b, α, β), then there are 2 local maximizers μ∗1 < a < b < μ∗2

The three cases are shown in the following pictures, where we plot �′(μ, α, β) against μ for
several values of α and for a fixed β = 4. In the pictures r = 3.
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We indicate the maximizer with μ∗ when it is unique, and with μ∗1, μ
∗
2 when there are

two.
Let’s consider the first case, with �′(a, α, β) ≥ 0. To compute �′(a, α, β), notice that

β = s(a) = 1
r(r−1)ar−1(1−a) . Substituting in �′(a, α, β) we obtain
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�′(a, α, β) = α +
1

(r − 1)(1− a)
− log

a

1− a

and analogously for β = s(b) = 1
r(r−1)br−1(1−b)we have

�′(b, α, β) = α +
1

(r − 1)(1− b)
− log

b

1− b

So �′(a, α, β) ≥ 0 implies

α ≥ log
a

1− a
− 1

(r − 1)(1− a)

The function log a
1−a − 1

(r−1)(1−a) has a maximum at log(r − 1) − r
r−1 and therefore we

have 53

�′(a, α, β) ≥ 0⇔ θ1 ≥ log(r − 1)− r

r − 1

When the above condition is satisfied, there is a unique maximizer, μ∗ > b, as shown in
the picture on the left.

When θ1 < log(r−1)− r
r−1 it is easier to draw a picture of the function log a

1−a− 1
(r−1)(1−a) ,

shown below.
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Notice that when θ1 < log(r − 1) − r
r−1 there are two intersections of the function and

the horizontal line y = α (in the picture α = −3). We denote the intersections φ1(α) and

53Taking derivative 1
a + 1

1−a − 1
(r−1)(1−a)2 = 0, we obtain the maximizer a∗ = r−1

r . The function is

increasing in [0, r−1
r ) and decreasing in ( r−1

r , 1]. The maximum is therefore at log(r − 1)− r
r−1 .

74



φ2(α). By construction, we know that a < 0.5 < b. By looking at the picture, it is clear
that �′(a, α, β) > 0 if a < φ1(α) and �′(a, α, β) < 0 if a > φ1(α). Analogously, we have
�′(b, α, β) > 0 if b > φ2(α) and �

′(b, α, β) < 0 if b < φ2(α).
For any α < −2, there exist φ1(α) and φ2(α) which are the intersection of the function

y = log
(

x
1−x

)
− 1

(r−1)(1−x) with the line y = α. Since the function is continuous, monotonic

increasing in [0, r−1
r
) and monotonic decreasing in ( r−1

r
, 1] it follows that φ1(α) and φ2(α)

are both continuous in α. In addition, φ1(α) is increasing in α and φ2(α) is decreasing in α.
It’s trivial to show that when α decreases, φ1(α) converges to 0 while φ2(α) converges to 1.

Consider the case in which �′(a, α, β) < 0 < �′(b, α, β) with two maximizers of �(μ, α, β).
Consider the function s(μ) defined above.

Since �′(a, α, β) < 0 we have a > φ1(α), which implies s(a) < s(φ1(α)). Therefore
β < s(φ1(α, β)) =

1
r(r−1)φ1(α)r−1(1−φ1(α))

.

Since �′(b, α, β) > 0 we have b > φ2(α), which implies s(b) > s(φ2(α)). Therefore β >
s(φ2(α)) =

1
r(r−1)φ2(α)r−1(1−φ2(α))

.

Notice that s(φ1(α)) > s(φ2(α)) for any (α, β) in this region of the parameters (see
picture below for an example with β = 4, α = −2, and r = 3).
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The areas are shown in the following picture
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and the rest of the proof follows. The existence of ζ(α) is shown using similar argument
as in the proof of Theorem 11, so it is omitted for brevity.

The next result is analogous to Theorem 6.3 in Diaconis and Chatterjee (2011), adapted
to the directed network model. It shows that not all the specifications of the model generate
directed Erdos-Renyi networks. We show this by focusing on a special case.

THEOREM 14 Consider the model with re-scaled potential T (G) and with β < 0,

T (G) = α

∑n
i=1

∑n
j=1 gij

n2
+ β

∑n
i=1

∑n
j=1

∑n
k=1 gijgjk

n3

Then for any value of α, there exists a positive constant C(α) such that for β < −C(α), the
variational problem is not solved at a constant graphon.

Proof. Fix the value of α and let p = eα

1+eα
, and λ = −β. For any h we have

76



T (h)− I(h) = α

∫
h(x, y)dxdy + β

∫
h(x, y)h(y, z)dxdydz

−
∫
h(x, y) lnh(x, y) + (1− h(x, y)) ln(1− h(x, y))dxdy

= α

∫
h(x, y)dxdy + β

∫
h(x, y)h(y, z)dxdydz

+

∫
h(x, y) ln(1 + eα)dxdy −

∫
h(x, y) ln(1 + eα)dxdy

−
∫
h(x, y) lnh(x, y) + (1− h(x, y)) ln(1− h(x, y))dxdy

= β

∫
h(x, y)h(y, z)dxdydz +

∫
h(x, y) ln pdxdy +

∫
h(x, y) ln(1− p)dxdy

−
∫
h(x, y) lnh(x, y) + (1− h(x, y)) ln(1− h(x, y))dxdy

= β

∫
h(x, y)h(y, z)dxdydz +

∫
h(x, y) ln pdxdy +

∫
h(x, y) ln(1− p)dxdy

+

∫
ln(1− p)dxdy −

∫
ln(1− p)dxdy

−
∫
h(x, y) lnh(x, y) + (1− h(x, y)) ln(1− h(x, y))dxdy

= β

∫
h(x, y)h(y, z)dxdydz + ln(1− p)

−
∫
h(x, y) ln

h(x, y)

p
+ (1− h(x, y)) ln

1− h(x, y)

1− p
dxdy

= −λt(H2, h) + ln(1− p)− Ip(h)

We have assumed that β < 0. Assume that the quantity T (h)− I(h) is maximized at a
constant graphon h(x, y) = μ. As a consequence, μ minimizes the function

λt(H2, h) + Ip(h) = λμ2 + Ip(μ)

Since μ is the graphon that maximizes T (h)−I(h), then we have that for any x ∈ [0, 1],
the following holds: λμ2 + Ip(μ) ≤ λx2 + Ip(x). The first order conditions for minimization
give

v(x) =
d

dx

[
λx2 + Ip(x)

]
= 2λx+ ln

x

1− x
− ln

p

1− p

Notice that v(0) = −∞ and v(1) = +∞, therefore μ must be an interior minimum. By
solving the first order conditions

2λμ+ ln
μ

1− μ
− ln

p

1− p
= 0
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it is easy to see that there exists a function c(λ) such that

μ =
exp

[
−2λμ+ ln p

1−p

]
1 + exp

[
−2λμ+ ln p

1−p

] ≤ c(λ)

So we getμ ≤ c(λ), where c(λ) is a function such that

lim
λ→∞

c(λ) = 0

and therefore it follows that

lim
λ→∞

min
x∈[0,1]

λx2 + Ip(x) = Ip(0) = ln
1

1− p

We will now show that there exists a graphon ν(x, y) which is not a constant and gives
a lower value of the expression above.

Let ν(x, y) be the function

ν(x, y) =

{
p if x ∈ [0, .5]and y ∈ [.5, 1]

0 otherwise

It follows that for almost all (x, y, z) triplets, ν(x, y)ν(y, z) = 0 and thus, t(H2, ν) = 0.
If we compute the value of Ip(ν) we obtain

Ip(ν) =

∫
[ 12 ,1]×[0, 12 ]

0 ln
0

p
+ ln

1

1− p
dxdy

+

∫
[0, 12 ]×[0, 12 ]

0 ln
0

p
+ ln

1

1− p
dxdy

+

∫
[0, 12 ]×[ 12 ,1]

p ln
p

p
+ (1− p) ln

1− p

1− p
dxdy

+

∫
[ 12 ,1]×[ 12 ,1]

0 ln
0

p
+ ln

1

1− p
dxdy

=
3

4
ln

1

1− p

Therefore we have shown that for λ large enough (i.e. for β negative and large enough),
T (ν)−I(ν) ≥ T (μ)−I(μ) . So, given a value for α, there exists a C(α) large enough, such
that for any β < −C(α) a constant graphon is not solution to the variational problem.

This result extends to models with two parameters and higher order dependencies, as
shown in the next theorem
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THEOREM 15 For the models in the first part of Theorem 12, the result of Theorem 14
hold.

Proof. The proof is equivalent to the proof of Theorem 14, replacing μ2 with μr, where
r is the order of dependence of the second homomorphism density t(H2, h).

THEOREM 16 Consider the model with re-scaled potential T (G) and with β < 0,

T (G) = α

∑n
i=1

∑n
j=1 gij

n2
+ β

∑n
i=1

∑n
j=1

∑n
k=1 gijgjk

n3
+ γ

∑n
i=1

∑n
j=1

∑n
k=1 gijgjkgki

n3
(66)

Then for any value of α ∈ R and γ > 0, there exists a positive constant C(α, γ) > 0 such that
for β < −C(α, γ), the variational problem is not solved at a constant graphon. Analogously,
if γ < 0, then for any value of α ∈ R and β > 0, there exists a positive constant C(α, β) > 0
such that for γ < C(α, γ), the variational problem is not solved at a constant graphon.

Proof. Fix the value of α and γ > 0. Let p = eα

1+eα
, and λ = −β. For any h we have
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T (h)− I(h) = α

∫
h(x, y)dxdy + β

∫
h(x, y)h(y, z)dxdydz + γ

∫
h(x, y)h(y, z)h(z, x)dxdydz

−
∫
h(x, y) lnh(x, y) + (1− h(x, y)) ln(1− h(x, y))dxdy

= α

∫
h(x, y)dxdy + β

∫
h(x, y)h(y, z)dxdydz + γ

∫
h(x, y)h(y, z)h(z, x)dxdydz

+

∫
h(x, y) ln(1 + eα)dxdy −

∫
h(x, y) ln(1 + eα)dxdy

−
∫
h(x, y) lnh(x, y) + (1− h(x, y)) ln(1− h(x, y))dxdy

= β

∫
h(x, y)h(y, z)dxdydz + γ

∫
h(x, y)h(y, z)h(z, x)dxdydz

+

∫
h(x, y) ln pdxdy +

∫
h(x, y) ln(1− p)dxdy

−
∫
h(x, y) lnh(x, y) + (1− h(x, y)) ln(1− h(x, y))dxdy

= β

∫
h(x, y)h(y, z)dxdydz + γ

∫
h(x, y)h(y, z)h(z, x)dxdydz

+

∫
h(x, y) ln pdxdy +

∫
h(x, y) ln(1− p)dxdy

+

∫
ln(1− p)dxdy −

∫
ln(1− p)dxdy

−
∫
h(x, y) lnh(x, y) + (1− h(x, y)) ln(1− h(x, y))dxdy

= β

∫
h(x, y)h(y, z)dxdydz + γ

∫
h(x, y)h(y, z)h(z, x)dxdydz + ln(1− p)

−
∫
h(x, y) ln

h(x, y)

p
+ (1− h(x, y)) ln

1− h(x, y)

1− p
dxdy

= βt(H2, h) + γt(H3, h) + ln(1− p)− Ip(h)

We have assumed that β < 0. Assume that the quantity T (h)− I(h) is maximized at a
constant graphon h(x, y) = μ. As a consequence, μ maximizes the function

βt(H2, h) + γt(H3, h)− Ip(h) = βμ2 + γμ3 − Ip(μ)

Since μ is the graphon that maximizes T (h)−I(h), then we have that for any x ∈ [0, 1],
the following holds: βμ2 + γμ3 − Ip(μ) ≥ βx2 + γx3 − Ip(x). The first order conditions for
maximization give

v(x) =
d

dx

[
βx2 + γx3 − Ip(x)

]
= 2βx+ 3γx2 − ln

x

1− x
+ ln

p

1− p
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Notice that v(0) = +∞ and v(1) = −∞, therefore μ must be an interior maximum. By
solving the first order conditions

2βμ+ 3γμ2 − ln
μ

1− μ
+ ln

p

1− p
= 0

it is easy to see that there exists a function c(β, γ) such that

μ =
exp

[
2βμ+ 3γμ2 − ln p

1−p

]
1 + exp

[
2βμ+ 3γμ2 − ln p

1−p

] ≤ c(β, γ)

So we get μ ≤ c(β, γ), and c(β, γ) is a function such that

lim
β→−∞

c(β, γ) = 0

and therefore, it follows that

lim
β→−∞

min
x∈[0,1]

βx2 + γx3 − Ip(x) = −Ip(0) = − ln
1

1− p

We will now show that there exists a graphon ν(x, y) which is not a constant and gives
a lower value of the expression above.

Let ν(x, y) be the function

ν(x, y) =

{
p if x ∈

[
0, 1

2

]
and y ∈

[
1
2
, 1
]

0 otherwise

It follows that for almost all (x, y, z) triplets, ν(x, y)ν(y, z) = 0 and ν(x, y)ν(y, z)ν(z, x) =
0. As a consequence t(H2, ν) = 0 and t(H3, ν) = 0. If we compute the value of Ip(ν) we
obtain

Ip(ν) =

∫
[ 12 ,1]×[0, 12 ]

0 ln
0

p
+ ln

1

1− p
dxdy

+

∫
[0, 12 ]×[0, 12 ]

0 ln
0

p
+ ln

1

1− p
dxdy

+

∫
[0, 12 ]×[ 12 ,1]

p ln
p

p
+ (1− p) ln

1− p

1− p
dxdy

+

∫
[ 12 ,1]×[ 12 ,1]

0 ln
0

p
+ ln

1

1− p
dxdy

=
3

4
ln

1

1− p
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Therefore we have shown that for β < 0 large enough in magnitude, T (ν) − I(ν) ≥
T (μ) − I(μ) . So, given a value of α ∈ R and γ > 0, there exists a positive constant
C(α, γ) > 0, such that for β < −C(α, γ) a constant graphon is not solution to the variational
problem (57) for the model in 66). The proof for γ < 0 follows the same steps.

THEOREM 17 Fix parameter γ > 0. Let the variational problem be described as

lim
n→∞

ψn(θ) = ψ(θ) = sup
μ∈[0,1]

{
αμ+ βμ2 + γμ3 − μ log μ− (1− μ) log(1− μ)

}
Let μ0 be (uniquely) determined by

6γ =
2μ0 − 1

μ2
0(1− μ0)2

and letα0,β0 be defined as follows:

β0 =
1

2μ0(1− μ0)
− 3γμ0

α0 = log
μ0

1− μ0

− 1

(1− μ0)
+

2μ0 − 1

2(1− μ0)2

1. If β ≤ β0, the maximization problem has a unique maximizer μ∗ ∈ [0, 1]

2. If β > β0 and α ≥ α0 then there is a unique maximizer μ∗ > 0.5

3. If β > β0 and α < α0, then there are two functions Sγ(φ1(α)) and Sγ(φ2(α)) that
define a V-shaped region of parameters (α, β) such that

(a) inside the V-shaped region, the maximization problem has two local maximizers
μ∗1 < 0.5 < μ∗2

(b) outside the V-shaped region, the maximization problem has a unique maximizer
μ∗

4. For any α < α0 inside the V-shaped region, there exists a function β = ζγ(α), such
that Sγ(φ1(α)) < ζγ(α) < Sγ(φ2(α)) and the two maximizers are both global.

Proof. Fix γ > 0 and consider the function

�γ(μ, α, β) = αμ+ βμ2 + γμ3 − μ log μ− (1− μ) log(1− μ)

For the moment we do not constrain β to be positive. The first and second order derivatives
w.r.t. μ are

�′γ(μ, α, β) = α + 2βμ+ 3γμ2 − ln

(
μ

1− μ

)
�′′γ(μ, α, β) = 2β + 6γμ− 1

μ(1− μ)
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The function �γ(μ, α, β) is concave if �′′γ(μ, α, β) < 0, i.e. when

2β + 6γμ <
1

μ(1− μ)
≡ s(μ)

The function s(μ) is decreasing in [0, .5) and increasing in (.5, 1], and it has a minimum
at μ = .5, where s(0.5) = 4.

Let μ0 be the value of μ at which the line 2β + 6γμ is tangent to s(μ), defined as the
solution of

6γ =
2μ− 1

μ2(1− μ)2

Notice that μ0 is unique, since the right-hand-side of the equation is a monotone increasing
function. Given μ0, we can find β0 by solving

β0 =
1

2

[
−6γμ0 +

1

μ0(1− μ0)

]
Therefore the function �γ(μ, α, β) is concave on the whole interval [0, 1] if β ≤ β0. In this

region, there is a unique maximizer μ∗ of �γ(μ, α, β).
If β > β0 the line 2β + 6γμ has two intersections with s(μ), and there are three possible

cases. We know that in this region the second derivative �′′γ(μ, α, β) can be positive or
negative, with inflection points denoted as a and b, found by solving the equation 2β+6γμ =
s(μ). In the picture below, we plot s(μ) (in red), the line 2β+6γμ (blue dashed) that define
the points a and b, and the tangent line (black solid) that defines μ0.
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By looking at the picture is clear that the first derivative �′γ(μ, α, β) is decreasing for
μ ∈ [0, a), increasing in μ ∈ (a, b) and decreasing in μ ∈ (b, 1].
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1. If �′γ(a, α, β) ≥ 0, then there is a unique maximizer μ∗ > b

2. If �′γ(b, α, β) ≤ 0, then there is a unique maximizer μ∗ < a

3. If �′γ(a, α, β) < 0 < �′γ(b, α, β), then there are 2 local maximizers μ∗1 < a < b < μ∗2

The three cases are shown in the following pictures, where we plot �′γ(μ, α, β) against μ for
several values of α and for a fixed β = 1 and γ = 1.5

0.0 0.2 0.4 0.6 0.8 1.0

−1
0

−5
0

5
10

μ

l'(
μ)

a b

μ*

0.0 0.2 0.4 0.6 0.8 1.0

−1
0

−5
0

5
10

μ

l'(
μ)

a b

μ1*

μ2*

0.0 0.2 0.4 0.6 0.8 1.0

−1
0

−5
0

5
10

μ

l'(
μ)

a b

μ*

We indicate the maximizer with μ∗ when it is unique, and with μ∗1, μ
∗
2 when there are

two.
Let’s consider the first case, with �′γ(a, α, β) ≥ 0. To compute �′γ(a, α, β), notice that

β =
1

2a(1− a)
− 2μ0 − 1

2μ2
0(1− μ0)2

a

Substituting in �′γ(a, α, β) we obtain

�′γ(a, α, β) = α +
a

a(1− a)
− 2μ0 − 1

μ2
0(1− μ0)2

a2 +
2μ0 − 1

2μ2
0(1− μ0)2

a2 − log
a

1− a

= α +
1

(1− a)
− 2μ0 − 1

2μ2
0(1− μ0)2

a2 − log
a

1− a

and analogously we have for b

�′γ(b, α, β) = α +
1

(1− b)
− 2μ0 − 1

2μ2
0(1− μ0)2

b2 − log
b

1− b

Notice that we can write �′γ(a, α, β) = α+η(a), where η(a) = 1
(1−a)−

2μ0−1
2μ2

0(1−μ0)2
a2−log a

1−a .
Consider the derivative of η(a)

η′(a) =
1

(1− a)2
− 2μ0 − 1

μ2
0(1− μ0)2

a− 1

a(1− a)

= a

[
2a− 1

a2(1− a)2
− 2μ0 − 1

μ2
0(1− μ0)2

]
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We know that the function h(a) = 2a−1
a2(1−a)2 is monotone increasing, with h(0) = −∞ and

h(1) =∞. Therefore the minimum of η(a) is found at a = μ0, where we have

η(μ0) =
1

(1− μ0)
− 2μ0 − 1

2(1− μ0)2
− log

μ0

1− μ0

This means that �′γ(a, α, β) ≥ 0 only if

α ≥ α0 = −η(μ0) = log
μ0

1− μ0

− 1

(1− μ0)
+

2μ0 − 1

2(1− μ0)2

When the above condition is satisfied, there is a unique maximizer, μ∗ > b, as shown in
the picture on the left.

When α < α0 and β > β0, we have �′γ(a, α, β) < 0 < �′(b, α, β). We draw a picture of
−η(μ) to help with the reasoning
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Notice that when α < α0 there are two intersections of the function and the horizontal line
y = α (in the picture α = −3). We denote the intersections φ1(α) and φ2(α). By construc-
tion, we know that a < 0.5 < b. By looking at the picture, it is clear that �′γ(a, α, β) > 0 if
a < φ1(α) and �

′
γ(a, α, β) < 0 if a > φ1(α). Analogously, we have �

′
γ(b, α, β) > 0 if b > φ2(α)

and �′γ(b, α, β) < 0 if b < φ2(α).
For any α < α0, there exist φ1(α) and φ2(α) which are the intersections of the function

−η(μ) with the line α. Since the function is continuous, monotonic increasing in [0, μ0) and
monotonic decreasing in (μ0, 1] it follows that φ1(α) and φ2(α) are both continuous in α. In
addition, φ1(α) is increasing in α and φ2(α) is decreasing in α. It’s trivial to show that when
α decreases, φ1(α) converges to 0 while φ2(α) converges to 1.

Consider the case in which �′γ(a, α, β) < 0 < �′γ(b, α, β) with two maximizers of �γ(μ, α, β).
Consider the function

S(μ) =
1

2μ(1− μ)
− 2μ0 − 1

2μ2
0(1− μ0)2

μ

Since �′γ(a, α, β) < 0 we have a > φ1(α), which implies S(a) < S(φ1(α)). Therefore

β < S(φ1(α)) =
1

2φ1(α)(1−φ1(α))
− 2μ0−1

2μ2
0(1−μ0)2

φ1(α).

Since �′γ(b, α, β) > 0 we have b > φ2(α), which implies S(b) > S(φ2(α)). Therefore

β > S(φ2(α)) =
1

2φ2(α)(1−φ2(α))
− 2μ0−1

2μ2
0(1−μ0)2

φ2(α).
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Notice that S(φ1(α)) > S(φ2(α)) for any (α, β) in this region of the parameters (see
picture below for an example with β = 1, α = −3, and γ = 1.5).
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In the following pictures we show the function S(φ1(α)) and S(φ2(α)) in the (α, β) space,
for a given γ > 0. Notice that for our models, we are only interested in the part of the graph
where β > 0. The graphs show that when we increase the value of γ the area in which the
model has multiple local maxima increases.
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The existence of ζγ(α) is shown using similar argument as in the proof of Theorem 11,
so it is omitted for brevity.

The last set of results extends the analysis of sampling algorithms in Bhamidi et al.
(2011) to directed graphs. In particular, the solution to the variational problems in the
previous theorems provides a characterization for the convergence of the MCMC samplers
commonly used to simulate samples of ERGMs from the model. The set of parameters
that lie within the V-shaped region, correspond to what Bhamidi et al. (2011) call the low
temperature phase. The set of parameters lying outside the V-shaped region correspond to
the high temperature phase.

To be precise, let M̃∗ ⊂ W̃ be the set of maximizers of the variational problem and let
Gn be a graph on n vertices drawn from the ERGM model implied by function T . The next
theorem shows that as n grows large, the network G̃n must be close to the set M̃∗. If the
set consists of a single graph, then this is equivalent to a weak law of large numbers for Gn.

THEOREM 18 Let M̃∗ be the set of maximizers of the variational problem (57). Let Gn

be a graph on n vertices drawn from the model implied by function T . Then for any η > 0
there exist C, κ > 0 such that for any n

P(δ�(G̃n, M̃
∗) > η) ≤ Ce−n

2κ

where P denotes the probability measure implied bu the model.

Proof. The proof is identical to the proof of Theorem 3.2 in Diaconis and Chatterjee
(2011)

For the model we analyze in this paper, the result specializes to the following theorem.

87



THEOREM 19 Consider the model above in (58) and assume θ2 > 0. Let Gn be the
directed graph implied by the model.

1. If the maximization problem in Theorem 11 has a unique solution μ∗, then Gn →
Gd(n, μ

∗) in probability as n→∞.

2. If the maximization problem in Theorem 11 has two solutions μ∗1 <
1
2
< μ∗2, then Gn

is drawn from a mixture of directed Erdos-Renyi graphs Gd(n, μ
∗
1) and Gd(n, μ

∗
2), as

n→∞.

Proof. It is an application of Theorem 18.

The previous results consider the limit as n → ∞. However, for fixed n, the speed of
convergence of the model to the stationary distribution πn can be studied using the previous
results. The model evolves according to a Glauber dynamics: essentially it behaves like a
random Gibbs sampler.

In particular, when the maximization problem in Theorem 11 has a unique solution,
the Markov chain of networks converges in an order n2 log n steps. However, when the
maximization problem in Theorem 11 has two solutions μ∗1 <

1
2
< μ∗2, the convergence is

exponentially slow, i.e. there exists a constant C > 0 such that the number of steps needed
to reach stationarity are O(eCn). This is true for any local chain, i.e. a chain that updates
o(n) links per iteration.

The main convergence result that is proven in Bhamidi et al. (2011) is extended to our
directed network formation model in the following proposition.

PROPOSITION 3 (Convergence rates) Assume β, γ > 0 in any of the models in The-
orem 12.

1. If the variational problem has a unique solution, we say that the parameters belong to
the high temperature region. The chain of networks generated by the model mixes in
order n2 log n steps.

2. If the variational problem has two local maxima, we say that the parameters belong to
the low temperature region. The chain of networks generated by the model mixes in
order en

2
steps. This holds for any local dynamics, i.e. a dynamics that updates an

o(n) number of links per period.

Proof. See Bhamidi et al. (2011), Thm. 5 and 6
The main reason for the slow convergence in the bi-modal regime is that a local chain

makes small steps. The solution to this problem is to allow the sampler to perform larger
steps. However, large steps are not sufficient. Indeed, we need to be able to make large steps
of order n: in other words we need a large step whose size is a function of n.

The result of asymptotically independent edges (Theorem 7 in Bhamidi et al. (2011)) is
proven above in our Theorem 19.
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