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Abstract

The main challenges in estimating strategic network formation models are the pres-
ence of multiple equilibria, and the fact that the number of possible network configura-
tions increases exponentially with the number of players. I propose a dynamic model
of strategic network formation which converges to a unique stationary equilibrium.
As a consequence, the structural parameters can be estimated using a single network
observation. Since maximum likelihood estimation is computationally infeasible, I pro-
pose a Bayesian estimation strategy that reduces the computational burden, allowing
inference in high-dimensional models. I prove that the proposed algorithm converges
to the correct posterior distribution. Using Add Health data, I investigate racial seg-
regation in school friendship networks and find that students prefer interactions with
individuals of the same race. The simulation of several desegregation programs shows
that equalizing the schools’ racial compositions may not be optimal, and some deseg-
regation plans could decrease welfare and increase friendship segregation.
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1 Introduction

Social networks are important determinants of individuals’ socioeconomic performance. An

increasing amount of evidence shows that the number and composition of social ties affects

employment prospects, school performance, risky behavior, adoption of new technologies,

diffusion of information and health outcomes.1 The structure of social ties is endogenous:

individuals choose their peers and friends according to their socioeconomic characteristics

and their relationships. As a consequence, in socially generated networks the agents are

likely to interact with similar individuals (homophily), segregating along socioeconomic at-

tributes.2 This paper develops a structural model and estimation methods to study the

determinants of such segregated network structures.

The economics literature has relied on two complementary approaches to model the pro-

cess of network formation. Strategic models interpret the network as equilibrium outcome

of a strategic game, in which rational players choose their social ties by weighing the costs

and benefits of each link.3 Structural estimation of strategic models is challenging, be-

cause the process of link formation generates externalities: individuals benefit from indirect

links created by other players. As a result, these models have multiple equilibria, a feature

that greatly complicates the identification of structural parameters.4 Furthermore, strategic

models suffer a curse of dimensionality: the number of possible network structures increases

exponentially with the number of players. Therefore the computation of equilibria may re-

quire an infeasible number of calculations for networks with a large number of players. On

the other hand, in random network formation models, the network is the realization of a

stochastic process.5 Each link occurs with some probability and the model characterizes

the likelihood of observing a specific network configuration. While these models are able to

match several important characteristics of social network data (high clustering, homophily,

diameter) and their estimation is relatively standard, they lack the equilibrium microfoun-

dation of the strategic models, limiting their use for policy analysis.

This paper develops and estimates a strategic model of dynamic network formation with

heterogeneous agents. Preferences are defined over individual socioeconomic characteristics

1For example, see the contributions of Topa (2001); Laschever (2009); Cooley (2010); De Giorgi et al.
(2010); Nakajima (2007); Bandiera and Rasul (2006); Conley and Udry (forthcoming); Golub and Jackson
(2011); Acemoglu et al. (2011).

2See Currarini et al. (2009, 2010), De Marti and Zenou (2009),Echenique et al. (2006).
3Jackson and Wolinsky (1996), Bala and Goyal (2000), Galeotti (2006), Jackson (2008).
4Comola (2010) and Mayer and Puller (2008) are examples of structural models where multiple equilibria

may arise.
5Jackson (2008),Jackson and Rogers (2007), Snijders (2002), Wasserman and Pattison (1996)
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and network structures. Each period a random player is selected from the population and

he meets another agent, according to a meeting technology. Upon meeting, the player has

the opportunity to revise his linking strategy: a link is created (or maintained, if already in

place) if and only if the utility of the additional link is positive.

I prove and characterize the existence of a unique stationary equilibrium, which provides

the likelihood of observing a specific network architecture in the long run. The absence of

multiple equilibria is crucial in estimation: assuming that the network observed in the data

is drawn from the stationary equilibrium of the model, the structural parameters can be

estimated using only one observation of the network at a single point in time.

I estimate the posterior distribution of the structural parameters, using a Bayesian ap-

proach. The main challenge is that the model’s likelihood is proportional to an intractable

normalizing constant, that cannot be evaluated or approximated with precision. To over-

come this problem, I propose a Markov Chain Monte Carlo algorithm that generates samples

from the posterior distribution without evaluating the likelihood. I prove that the algorithm

converges to the correct posterior distribution and therefore the sample averages of the algo-

rithm’s output can be used to approximate posterior expectations. Using several properties

of the model, I am able to decrease the computational burden even further, allowing infer-

ence in high dimensional models.

I present an application to the study of segregation in school friendship networks, us-

ing data from the National Longitudinal Study of Adolescent Health (Add Health). This

unique database contains detailed information on friendship networks of students enrolled

in a representative sample of US schools. The final sample contains 14 schools with a total

of 1139 students.6 I find that race, gender and grade are important determinants of network

formation in schools. There is overwhelming evidence of homophily, i.e. students tend to

interact and form social ties with similar people, other things being equal. These estimates

control for the structure of the network. In addition, I find that homophily effects extend

beyond direct links: students prefer an homogeneous racial composition of friends of friends.

This model provides useful guidance to policymakers who care about promoting policies

that affect the structure of the network. I use the estimated model to predict how a change

in the composition of the student population affects the structure of the network and wel-

6I use only the schools from the saturated sample. The sampling scheme of Add Health involved in-
school interviews for all the students. A subsample of 20745 students was also interviewed at home, to
collect detailed individual information. The saturated sample contains schools for which both interviews
were administered to each student enrolled. Therefore this sample does not contain any missing information
about individual controls. This is not the case for most schools in Add Health.
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fare.7 As an example, I consider a busing program that affects two schools in the sample, one

with an enrolled population of 98% Whites and the other with 96% African Americans. I

simulate alternative re-assignments of students across schools and then measure the average

segregation and welfare in the new stationary equilibrium of the model.

I find that a desegregation program that equalizes the racial composition across schools

is not welfare maximizing and may promote higher segregation within schools. Furthermore,

a desegregation plan may have different effects on each school, increasing segregation in one

while decreasing it in the other. I also compare the results of these policy experiments with

results generated using a model with a simpler preference structure, where individuals care

only about their direct links. The predictions of such model are quite different from the full

structural model.

The paper provides both theoretical and empirical contributions to the literature on net-

work formation. From the theoretical side, the model incorporates ingredients from both

strategic and random network formation literature (Jackson, 2008). The link formation is

sequential: each period only one agent is active and he updates only one link. At the begin-

ning of the period, a random player is drawn from the population and he meets another agent

according to a random meeting technology. Upon meeting the player has the opportunity to

update his social tie to the agent. The implicit assumption is that meetings occur often and

players have frequent opportunities to revise their strategies.

The agents’ preferences allow for a rich structure of indirect payoffs from link formation.

Individuals care about the socioeconomic composition of their friends, friends of friends and

feedback from those friends payoffs. Concretely, a player’s utility from linking to another

individual depends on the socioeconomic attributes of the pair; additionally, players value

the socioeconomic composition of friend of friends, and how befriending someone could affect

their popularity among the other players. Finally, a link provides additional utility when it

is reciprocated. When updating the link, the player receives a random shock to his prefer-

ences, which is unobserved by the econometrician. This shock captures unobservable factors

that could affect link formation: for example, a student may be in a bad mood when he

meets another individual, and this affects his linking strategy. The link is formed if and

only if the social relationship provides positive utility. To preserve tractability, I assume

that individuals do not take into account how their current linking strategy affects the shape

of future networks: they follow a stochastic best-response dynamics à la Blume (1993).8

7Alternatively, the model could be used as a guide for the design of randomized experiments that modify
students assignments.

8It is possible to relax the assumption of myopic agents, but the computational burden becomes much
more challenging. The simple characterization of equilibrium behavior, long run dynamics and the estimation
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This assumption reduces the computational complexity and makes analysis of the network

dynamics feasible.9

The model has two desirable features. First, there are two sources of heterogeneity. Each

individual is endowed with a set of exogenous attributes. Furthermore, the dynamics of

network formation generates endogenous heterogeneity: each individual has a different set of

friends and different compositions of friends’ attributes. In equilibrium, two agents with the

same exogenous attributes may exhibit very different linking strategies, due to their differ-

ent endogenous positions in the network and the socioeconomic composition of their friends.

Most models of strategic network formation incorporate the first level of heterogeneity but

are unable to generate different equilibrium behavior, because the agents in these models

only care about their direct links.10

Second, the network formation game can be characterized as a potential game.11 All the

players’ incentives in any state of the network are completely summarized by an aggregate

function, the potential, mapping networks and socioeconomic characteristics into potential

levels. When an agent updates a link, the change in his utility is equal to the change in

the aggregate potential. This simple characterization is key to making analysis of a network

with many agents feasible because the potential summarizes the incentives of all players

with a single number: there is no need to keep track of the choices and utility levels of all

n players. The existence of a potential allows me to characterize the stationary equilibrium

in closed form. Assuming that preference shocks follow an extreme value distribution (i.i.d.

over time and across agents), and that any pair of agents can meet with positive probability,

I prove that the unique stationary equilibrium characterizes the probability of observing a

specific network structure as an exponential function of the potential. This result provides

the likelihood function underlying the estimation.

The second main contribution is the development of a flexible algorithm that reduces

the computational burden for estimation.12 The likelihood of this model is proportional

strategy depend on the best-response dynamics and may not extend to networks with forward-looking agents.
9Alternatively, it is possible to interpret this model as an equilibrium selection device, that selects one of

the possible networks as the result of an evolutionary game.
10An exception is the model of De Marti and Zenou (2009), where the cost of linking an individual also

depends on the composition of friends of friends. While the structure of the preference is similar to mine, they
present a static model and the link formation requires mutual agreement of the players. The consequence is
that their model has multiple equilibria.

11See Monderer and Shapley (1996) for a description of games with a potential. Gilles and Sarangi (2004)
investigates a model of network formation with a potential function. Their model only considers the utility
from direct links, while mine includes indirect links, mutual links and popularity.

12Christakis et al. (2010) propose an alternative model and estimation procedure. In their model myopic
agents meet over time and must mutually agree to form a link. The meeting is treated as a latent variable
and integrated out in estimation, using a MCMC algorithm that samples parameters from the posterior
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to a normalizing constant that cannot be evaluated or approximated with precision. A

state-of-the-art supercomputer would take several years to evaluate the likelihood at a sin-

gle parameter value. This feature prevents the use of traditional MCMC schemes, e.g.

Metropolis-Hastings, that evaluate the likelihood at each iteration. To circumvent this prob-

lem, I propose a Markov Chain Monte Carlo algorithm that samples from the posterior

distribution of the parameters without evaluating the likelihood. The algorithm belongs to

the class of exchange algorithms, first proposed by Murray et al. (2006) to generate samples

from posterior distributions with similar intractable likelihoods. I develop an approximate

version of the algorithm that reduces the computational burden even further, allowing infer-

ence in high dimensional models.13

The idea behind the sampler is as follows. At each iteration we perform a double

Metropolis-Hastings step. First, we propose a new parameter vector as in the standard

Metropolis-Hastings scheme; second, we draw a new network from the stationary equilib-

rium of the model at the proposed parameter, using a second Metropolis-Hastings algorithm.

If the network generated by the latter simulation is similar to the network observed in the

data, then the parameter is accepted with high probability; viceversa, if the simulated net-

work is very different from the data, the probability of acceptance is lower. The similarity

between networks is measured using likelihood ratios at the current and proposed parame-

ters.14 The intuition is that if the observed and simulated networks are similar, the proposed

parameter is very likely to generate the data as a draw from the stationary equilibrium.

I prove that the samples generated by my approximate algorithm converge to the correct

posterior distribution. Therefore, sample averages computed using the algorithm’s output

can be used to approximate posterior expectations and to make inference. In the empirical

application I use an extension of the algorithm which makes use of parallel computing tech-

niques and allows me to estimate the model using multiple network data. This is extremely

important if the model is used to perform counterfactual policy experiments: using multiple

networks allows to control for network fixed effects and additional network level character-

istics that could affect the outcome of the implemented policy.

In the appendix, I provide extensions of the model and estimation strategy to incorporate

unobserved heterogeneity in individual quality and preferences. The inclusion of unobserved

heterogeneity and random coefficients makes the model more realistic, at the price of a

substantial increase in computational costs. Furthermore, the estimation strategy is easily

while simulating meeting sequences.
13I use arguments similar to Liang (2010)
14While the evaluation of the likelihood is infeasible, it is always possible to evaluate likelihood ratios

computed at the same parameter value but at different network configurations.
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adapted to deal with missing links, through data augmentation techniques. This extension

also comes with a substantial additional computational cost.

The paper proceeds as follows. In section 2, I present the model’s details and show that

it belongs to the class of potential games. Then, I provide a full characterization of the

unique stationary equilibrium. Section 3 identifies the computational problem in estima-

tion and proposes an approximate exchange algorithm for the estimation of the posterior

distribution. I prove that the proposed algorithm converges to the correct posterior distri-

bution. The empirical application is presented in Section 4, where I estimate preferences

for interracial interaction in a sample of US high schools. I also study the impact of school

desegregation programs on the structure of the school friendship network. Section 5 con-

cludes. The proofs for the theoretical model results are in Appendix A, while the details

of the estimation algorithm are contained in Appendix B. Several extensions of the model

to incorporate unobserved heterogeneity in individual quality and preferences, and missing

links are shown in Appendix C.

2 A Model of Network Formation

2.1 Setup

Let I = {1, 2, ..., n} be the set of agents, each identified by a vector of A (exogenous)

attributes Xi = {Xi1, ..., XiA}, e.g. gender, wealth, age, location, etc. The attributes of the

population are contained in the matrix X = {X1, X2, ..., Xn} and X denotes the set of all

possible matrices X. Time is discrete.

The social network is represented as a n× n binary matrix G ∈ G, where G is the set of

all n× n binary matrices. The generic element of matrix G is

Gij =

{
1 if individual i nominates individual j as a friend

0 otherwise

and I follow the convention in the literature, assuming Gii = 0, for any i.

The network represented by G is directed : the existence of a link from i to j does not

imply the existence of the link from j to i, i.e. Gij 6= Gji. This modeling choice reflects the

structure of the Add Health data, where friendship nominations are not necessarily mutual.

Some authors refer to this data as perceived networks.15

Let the realization of the network at time t be denoted as gt and the realization of the

link between i and j at time t be gtij. The network including all the current links but gtij, i.e.

15See Wasserman and Faust (1994) for references.
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gt\gtij, is denoted as gt−ij; while gt−i denotes the network matrix excluding the i-th row (i.e.

all the links of player i).

Preferences are defined over network realizations and population characteristics. I assume

there is an utility function Ui : G × X → R for each i, mapping networks and individual

characteristics into utility levels.

2.1.1 Network Formation Process

The process of link formation follows a stochastic best-response dynamics, as in Blume (1993),

and generates a Markov chain of networks. The main ingredients of this process are random

meetings and utility maximization. The implicit assumption is that individuals meet very

frequently and have the opportunity to revise their links.

Meeting Technology. At the beginning of each period a player i is randomly selected from

the population, and he meets individual j, according to a matching technology. Formally, the

meeting process is a stochastic sequence m = {mt}∞t=1 with support I × I. The realizations

of the meeting process are ordered pairs mt = {i, j}, indicating which agent i should play

and which link gij can be updated at period t.16

The probability that player i is randomly chosen from the population and meets agent j

is defined as

Pr
(
mt = ij|gt−1, X

)
= ρ

(
gt−1, Xi, Xj

)
(1)

where
∑n

i=1

∑n
j=1 ρ (g,Xi, Xj) = 1 for any g ∈ G. The matching probability depends on the

current network (e.g. the existence of a common friend between i and j) and the character-

istics of the pair. This structure includes matching technologies with a bias for same-type

individuals as in Currarini et al. (2009). The simplest example of matching technology is

an i.i.d. discrete uniform process with ρ (gt−1, Xi, Xj) = 1
n(n−1)

. An example with bias for

same-type agents is ρ (gt−1, Xi, Xj) ∝ exp [−d (Xi, Xj)], where d (·, ·) is a distance function.

Utility Maximization. Conditional on the meeting mt = ij, player i updates the link gij

to maximize his current utility, taking the existing network gt−ij as given. I assume that the

agents do not take into account the effect of their linking strategy on the future evolution

of the network. The players have complete information, since they can observe the entire

network and the individual attributes of all agents. Before updating his link to j, individual

16Several models incorporate a matching technology in the network formation process. Jackson and Watts
(2002) assume individuals meet randomly according to a discrete uniform distribution. Currarini et al.
(2009) introduce a matching process that is biased towards individuals of the same type, similar to the one
modeled here.
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i receives an idiosyncratic shock ε ∼ F (ε) to his preferences that the econometrician cannot

observe. This shock models unobservables that could influence the utility of an additional

link, e.g. mood, gossips, fights, etc. Player i links agent j at time t if and only if it is a best

response to the current network configuration, i.e. gtij = 1 if and only if

Ui
(
gtij = 1, gt−1

−ij , X
)

+ ε1t ≥ Ui
(
gtij = 0, gt−1

−ij , X
)

+ ε0t. (2)

I assume that when the equality holds, the agent plays the status quo.17

The network formation process generates a sequence [g0, g1, ...., gt] of networks. In each

period only one element of the random matrix G is updated, conditioning on the existing

network. Therefore the sequence is a Markov chain, with transition probabilities determined

by the meeting process and agents’ linking choices.18

2.1.2 Preferences

The preferences are defined over networks and individual characteristics. The utility of player

i from a network g and population attributes X = (X1, ..., Xn) is given by

Ui (g,X) =
n∑
j=1

gijuij︸ ︷︷ ︸
direct friends

+
n∑
j=1

gijgjimij︸ ︷︷ ︸
mutual friends

+
n∑
j=1

gij

n∑
k=1
k 6=i,j

gjkvik

︸ ︷︷ ︸
friends of friends

+
n∑
j=1

gij

n∑
k=1
k 6=i,j

gkiwkj

︸ ︷︷ ︸
popularity

(4)

where uij ≡ u (Xi, Xj), mij ≡ m (Xi, Xj), vij ≡ v (Xi, Xj) and wij ≡ w (Xi, Xj) are

(bounded) real-valued functions of the attributes. The utility of the network is the sum

of the net benefits received from each link. The total benefit from an additional link has

four components.

When a player creates a link to another individual, he receives a direct net benefit uij.

The direct utility includes both costs and benefits and it may possibly be negative: when

only homophily enters payoffs of direct links, the net utility uij is positive if i and j belong

to the same group, while it is negative when they are of different types. This is illustrated

17This assumption does not affect the main result and is relevant only when the distribution of the
preference shocks is discrete.

18The derivation of the transition matrix is straightforward. The set of all possible states corresponds to
the set of all possible binary n × n matrices G; the probability of transition from a network gt = g to next
period network gt+1 =

(
g′ij , g−ij

)
is

ρ (g,Xi, Xj) Pr
[
Ui
(
g′ij , g−ij , X

)
+ ε

(
g′ij
)
≥ Ui (gij , g−ij , X) + ε (gij)

]
(3)

The transition probability is zero if the networks g and g′ differ by more than one element.
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Figure 1: Components of the utility function

A. Direct friends

B. Mutual friends

C. Friends of friends

D. Popularity

The network contains n = 8 agents, belonging to two groups: blue and yellow. All the panels show a situation
in which player 4 decides whether to form a link to individual 5 (the dashed arrow from 4 to 5). Agent 4
receives different direct utility when he links a blue (Panel A, left) or a yellow (Panel A, right) individual.
Agent 4’s utility from an additional link is different if the link is unilateral (Panel B, left) or reciprocated
(Panel B, right). Furthermore, agent 4’s utility from friends of friends varies with their socioeconomic
composition: 3 blue individuals (Panel C, left) provide different utility than 2 blue and 1 yellow agents
(Panel C, right). Finally, agent 4 values how his new link affects his popularity, since he creates a new
indirect friendship for those who already have a link to him (agents 1,2 and 3). The utility of a link to agent
5 (which is yellow) when agents 1,2 and 3 are all blue (Panel D, left) is different than when agent 2 is yellow
and 1 and 2 are blue (Panel D, right).

in Panel A of Figure 1 with a simple network of 8 agents. Each agent can belong to either

the blue group or the yellow group. The link that agent 4 forms to individual 5 provides
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different direct utility in the two networks, since the identity of 5 is different: blue for the

left network and yellow for the right one. In many models this component is parameterized

as uij = bij − cij, where bij indicates the (gross) benefit and cij the cost of forming the

additional link gij. I use the notation uij, since it does not require assumptions on the cost

function.

The players receive additional utility mij if the link is mutual; friendship is valued differ-

ently if the other agent reciprocates. An agent may perceive another individual as a friend,

but that person may not perceive the relationship in the same way. Panel B of Figure 1

isolates this component: a link from agent 4 to agent 5 has a different value if agent 5 recip-

rocates (right network).

The players value the composition of friends of friends. When i is deciding whether to

befriend j, she observes j’s friends and their socioeconomic characteristics. Each of j’s friend

provides additional utility v(Xi, Xk) to i. In this model, an agent who has the opportunity

to form an additional link, values a white student with three Hispanic friends as a different

good than a white student with two white friends and one African American friend.19 In

other words, individuals value both exogenous heterogeneity and endogenous heterogeneity:

the former is determined by the socioeconomic characteristics of the agents, while the latter

arises endogenously with the process of network formation. I assume that only friends of

friends are valuable and they are perfect substitutes: individuals do not receive utility from

two-links-away friends. In Panel C of Figure 1, from the perspective of agent 4, agent 5 in

the left network is a different good than agent 5 in the right network, since the composition

of his friends is different.

The fourth component corresponds to a popularity effect. Consider Panel D in Figure 1.

When agent 4 forms a link to agent 5, he automatically creates an indirect link for agents

1, 2 and 3. Thus agent 4 generates an externality. For example, suppose there is homophily

in indirect links. Then in the left network the externality is negative for all three agents (1,

2 and 3); and in the right network it is negative for 1 and 3, but positive for 2. Therefore,

in the left network the popularity of 4 goes down, while in the right network the fall in

popularity is less pronounced.

19A similar assumption is used in De Marti and Zenou (2009) where the agents’ cost of linking depend
on the racial composition of friends of friends. Their model is an extension of the connection model of
Jackson and Wolinsky (1996), and the links are formed with mutual consent. The corresponding network is
undirected.
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2.2 Equilibrium Analysis

I impose an additional assumption on the functional forms of the utility functions. The

assumption is not too strong, but it provides important identification restrictions. I assume

that the utility mij obtained from mutual links is symmetric and that the utility of an

indirect link vij has the same functional form as the utility from the popularity effect wij.

ASSUMPTION 1 (Preferences) The preferences satisfy the following restrictions

m (Xi, Xj) = m (Xj, Xi) for all i, j ∈ I
w (Xk, Xj) = v (Xk, Xj) for all k, j ∈ I

therefore the utility function is

Ui (g,X) =
n∑
j=1

gijuij +
n∑
j=1

gijgjimij +
n∑
j=1

gij

n∑
k=1
k 6=i,j

gjkvik +
n∑
j=1

gij

n∑
k=1
k 6=i,j

gkivkj (5)

The symmetry in mij does not imply that a mutual link between i and j gives both the same

utility. Indeed if i and j have a mutual link, they receive the same common utility compo-

nent (mij) but they may perceive that particular friendship in a different way, as long as the

utility from direct or indirect links are different for i and j. As a result, two individuals with

the same exogenous characteristics Xi = Xj (say two males, whites, enrolled in eleventh

grade) who form a mutual link receive the same uij and mij, but they may have different

utilities from that additional link because of the composition of their friends of friends and

their popularity. Therefore, this part of the assumption helps in identifying the utility from

indirect links and popularity.

The second restriction is more technical. When i forms a link to j, i creates an external-

ity for all k’s who have linked her: any such k now has an additional indirect friend, i.e. j,

who agent k values by an amount v (Xk, Xj). When w (Xk, Xj) = v (Xk, Xj), an individual

i values his popularity effect as much as k values the indirect link to j, i.e., i internalizes the

externality he creates.

Assumption 1 is the main ingredient that guarantees a closed form solution for the sta-

tionary equilibrium of the model. Without this assumption, the model would still have a

unique stationary equilibrium, however it would be impossible to characterize the likelihood

function in closed form.20 The first part of the assumption is a normalization of the utility

function that allows identification for the utility of indirect links and popularity. The second

20Estimation of such a model could be performed using Approximate Bayesian Computations (see Marjo-
ram et al. (2003) for example), but the computational burden is even more challenging.
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part of the assumption is an identification restriction, that guarantees the model’s coherency

in the sense of Tamer (2003). In simple words, this part of the assumption guarantees that

the system of conditional linking probabilities implied by the model generates a proper joint

distribution of the network matrix.21

The assumption delivers a very simple characterization of the stationary equilibrium.

The following proposition highlights a crucial result of this paper.

PROPOSITION 1 (Potential Function)
Under Assumption 1, the deterministic component of the incentives of any player in any
state of the network are summarized by a potential function, Q : G × X → R

Q (g,X) =
n∑
i=1

n∑
j=1

gijuij +
n∑
i=1

n∑
j>i

gijgjimij +
n∑
i=1

n∑
j=1
j 6=i

n∑
k=1
k 6=i,j

gijgjkvik, (6)

and the network formation game is a Potential Game.

Proof. See Appendix A

The intuition for the result is simple. Under the restrictions of Assumption 1, for any

player i and any link gij we have

Q (gij, g−ij, X)−Q (1− gij, g−ij, X) = Ui (gij, g−ij, X)− Ui (1− gij, g−ij, X)

Consider two networks, g = (gij, g−ij) and g′ = (1−gij, g−ij), that differ only with respect

to one link, gij, chosen by individual i: the difference in utility that agent i receives from the

two networks, Ui (g,X)−Ui (g′, X), is exactly equal to the difference of the potential function

evaluated at the two networks, Q (g,X) − Q (g′, X). That is, the potential is an aggregate

function that summarizes both the state of the network and the deterministic incentives of

the players in each state.

Characterizing the network formation as a potential game facilitates analysis. In order to

compute the equilibria of the model, there is no need to keep track of each player’s behavior:

the potential function contains all the relevant information. This property is key for the

analysis of networks with many players: the usual check for existence of profitable deviations

from the Nash equilibrium can be performed using the potential, instead of checking each

player’s possible deviation in sequence. The computation of all profitable deviations for each

player involves n(n − 1)2n(n−1) operations: each player has n − 1 possible deviations, there

21Similar restrictions are also encountered in spatial econometrics models (Besag, 1974) and in the litera-
ture on qualitative response models (Heckman, 1978; Amemiya, 1981)
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are n players and a total of 2n(n−1) possible network configurations. As it is shown below

(Proposition 2), when the game is a potential game, the computation of all Nash equilibria

is equivalent to finding the local maxima of the potential function. This corresponds to

evalutating the potential function for all the 2n(n−1) possible network structures. The latter

task involves fewer operations by a factor of n(n − 1), thus decreasing the computational

burden.

It should be emphasized that the potential Q (g,X) is not equivalent to the welfare

function W (g,X), that describes the total utility of all agents in the network,

W (g,X) =
n∑
i=1

Ui (g,X)

= Q (g,X) +
n∑
i=1

n∑
j>i

gijgjimij +
n∑
i=1

n∑
j=1

n∑
k=1
k 6=i,j

gijgkivkj

To analyze the long run behavior of the model, I impose more structure on the meeting

technology.22

ASSUMPTION 2 (Meeting Process) Any meeting is possible, i.e., for any ij ∈ I × I

ρ(gt−1, Xi, Xj) > 0 (7)

The meeting process is such that any player can be chosen and any pair of agents can meet.

This assumption guarantees that any equilibrium network can be reached with positive

probability. For example, a discrete uniform distribution satisfies this assumption.

It is helpful to consider a special case of the model, in which there are no preference

shocks: the characterization of equilibria and long run behavior for such model provides

intuition about the dynamic properties of the full structural model.

Let N (g) be the set of networks that differ from g by only one element of the matrix, i.e.

N (g) ≡ {g′ : g′ = (g′ij, g−ij), for all g′ij 6= gij, for all i, j ∈ I}. (8)

A Nash network is defined as a network in which any player has no profitable deviations from

his current linking strategy, when randomly selected from the population. The following

results characterize the set of the pure-strategy Nash equilibria and the long run behavior

of the model with no shocks.

22Christakis et al. (2010) assume that individuals can meet only once and their link remains in place forever.
This assumption is convenient when estimating a large network, but it does not allow the characterization
of the stationary equilibrium.
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PROPOSITION 2 (Model without Shocks: Equilibria and Long Run)
Consider the model without idiosyncratic preference shocks. Under Assumptions 1 and 2:

1. There exists at least one pure-strategy Nash equilibrium network

2. The set NE(G, X, U) of all pure-strategy Nash equilibria of the network formation game
is completely characterized by the local maxima of the potential function.

NE(G, X, U) =

{
g∗ : g∗ = arg max

g∈N (g∗)
Q (g,X)

}
(9)

3. Any pure-strategy Nash equilibrium is an absorbing state.

4. As t→∞, the network converges to one of the Nash networks with probability 1.

Proof. In Appendix A

Suppose that the current network is a Nash network. As a consequence, if a player deviates

from the current linking strategy, he receives less utility.23 Since the change in utility for any

agent is equivalent to the change in potential, any deviation from the Nash network must

decrease the potential. It follows that the Nash network must be a local maximizer of the

potential function over the set of networks that differ from the current network for at most

one link.

Furthermore, the network must converge to one of the Nash Equilibria in the long run,

independently of the initial network. Suppose a player is drawn from the meeting process.

Such agent will play a best response to the current network configuration. Therefore, his

utility cannot decrease. This holds for any player and any period. It follows that the potential

is nondecreasing over time. Since there is a finite number of possible networks, in the long

run, the sequence of networks must reach a local maximum of the potential, i.e., a Nash

equilibrium.

With the intuition from the simpler model in mind, we can now analyze the full structural

model with preference shocks. In the full model there is a high probability of hitting a Nash

network. However, the preference shocks allow the chain to escape from such networks: this

makes the model ergodic and eliminates absorbing states.

I make the following parametric assumption on the shocks, that allows me to characterize

the stationary distribution and transition probabilities.

23When the utility from the equilibrium and the deviation is the the same, the agent plays the status quo,
i.e., the Nash strategy.
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ASSUMPTION 3 (Idiosyncratic Shocks) The shock follows a Type I extreme value
distribution, i.i.d. among links and across time.

The probability of a link between i and j, given a meeting mt = ij and previous period

network configuration gt−1 is thus given by

Pr
(
gtij = 1

∣∣ gt−1
−ij , X

)
= Pr

[
ε0t − ε1t ≤ Ui

(
1, gt−1
−ij , X

)
− Ui

(
0, gt−1
−ij , X

)]
(10)

=

exp

[
uij + gt−1

ji mij +
∑
k 6=i,j

gt−1
jk vik +

∑
k 6=i,j

gt−1
ki vkj

]

1 + exp

[
uij + gt−1

ji mij +
∑
k 6=i,j

gt−1
jk vik +

∑
k 6=i,j

gt−1
ki vkj

] (11)

Under Assumptions 1-3, the network evolves as a Markov chain with transition probabil-

ities given by the conditional choice probabilities (11) and the probability law of the meeting

process mt.

One can show that the sequence [g0, g1, ...., gt] is:

1. irreducible, i.e. every state of the network can be reached with positive probability in

a finite number of steps

2. aperiodic, i.e. the chain does not get trapped in cycles, because the probability of

moving from a state to another is always positive under the extreme value assumption

Intuitively, since the meeting probability Pr (mt = ij) > 0 for all ij, there is always a positive

probability of reaching a new network in which the link gij can be updated. The logistic

shock assumption implies that there is always a positive probability of switching to another

state of the network, thus eliminating absorbing states.

THEOREM 1 (Uniqueness and Characterization of Stationary Equilibrium)
Consider the network formation game with idiosyncratic shocks, under Assumptions 1-3.

1. There exists a unique stationary distribution π(g,X), i.e.,

lim
t→∞

P
(
Gt = g

∣∣G0 = g0, X
)

= π (g,X) . (12)

2. If the meeting probability of i and j does not depend on the existence of a link between
them, i.e.,

ρ
(
gt−1, Xi, Xj

)
= ρ

(
gt−1
−ij , Xi, Xj

)
. (13)

for any i, j ∈ I. Then the stationary distribution π(g,X) is

π (g,X) =
exp [Q (g,X)]∑

ω∈G
exp [Q (ω,X)]

, (14)

where Q (g,X) is the potential function (6).
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Proof. In Appendix A

The first part of the proposition follows directly from the irreducibility and aperiodicity

of the Markov process generated by the network formation game. The uniqueness of the

stationary distribution is crucial in estimation, since one does not need to worry about

multiple equilibria. Furthermore, the stationary equilibrium characterizes the likelihood of

observing a specific network configuration in the data. As a consequence, I can estimate

the structural parameters from observations of only one network at a specific point in time,

under the assumption that the observed network is drawn from the stationary equilibrium.

The second part of the proposition provides a closed-form solution for the stationary

distribution. The latter can be interpreted as the probability of observing a specific network

structure, when the network is observed in the long run. In the long run, the system of

interacting agents will visit more often those states/networks that have high potential, which

correspond to the Nash equilibria described in Proposition 2. Therefore a high proportion

of the possible networks generated by the network formation game, will correspond to Nash

networks.

The stationary distribution π (g,X) includes a normalizing constant

c (G, X) ≡
∑
ω∈G

exp [Q (ω,X)] (15)

that guarantees that (14) is a proper probability distribution. Unfortunately, this nor-

malizing constant greatly complicates estimation, since it cannot be evaluated exactly or

approximated with precision. How this is circumvented is explained in the next section.

3 Estimation Strategy

3.1 Computational Problem

To estimate the model, I assume that the utility functions depend on a vector of parameters

θ = (θu, θm, θv):

uij (θu) = u (Xi, Xj, θu)

mij (θm) = m (Xi, Xj, θm)

vij (θv) = v (Xi, Xj, θv)

The goal is to recover the parameters’ posterior distribution, given the data, the model and

the prior. Let p (θ) be the prior distribution. Given the likelihood function π (g,X, θ) of the
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observed data (g,X), the posterior distribution of θ can be written as

p (θ|g,X) =
π (g,X, θ) p (θ)∫

Θ
π (g,X, θ) p (θ) dθ

. (16)

Intuitively, the posterior is the distribution of the parameters that are most likely to generate

the data g, given the model π (g,X, θ) and the prior p (θ).

Estimation of the posterior faces two computational challenges. First, the posterior de-

pends on the normalizing integral
∫

Θ
π (g,X, θ) p (θ) dθ. This problem is common to any

Bayesian analysis, and is often solved using a Metropolis-Hastings algorithm that avoids

direct computation of the integral. This algorithm generates a Markov chain of parameters

{θ0, θ1, θ2, ..} whose unique invariant distribution is the posterior (16). The empirical dis-

tribution of the chain is used as estimate of the posterior. A Weak Law of Large Numbers

guarantees that sample averages computed using the sequence generated by the chain, con-

verge to the expectation under the posterior distribution.

At each iteration s, with current parameter θs = θ, a new parameter vector θ′ is proposed

from a distribution qθ (·|θ). At iteration t+ 1 the new parameter θs+1 is updated according

to

θs+1 =

{
θ′ with prob. α (θ, θ′)

θ with prob. 1− α (θ, θ′) ,
(17)

where α (θ, θ′) is computed as

α (θ, θ′) = min

{
1,
p (θ′|g,X) qθ (θ|θ′)
p (θ|g,X) qθ (θ′|θ)

}
(18)

The appealing feature of this scheme is that one does not need to evaluate the integral to

compute α (θ, θ′), because the ratio of the posteriors is p (θ′|g,X) /p (θ|g,X) = π(g,X,θ′)p(θ′)
π(g,X,θ)p(θ)

.

However, the naive version of the Metropolis-Hastings algorithm cannot be used for the

model formulated above. The likelihood function π (g,X, θ) is known up to a normalizing

constant that cannot be computed in practice. The acceptance probability in (18) can be

rewritten to make the likelihood contribution explicit

α (θ, θ′) = min

{
1,

exp[Q(g,X,θ′)]
c(G,X,θ′) p (θ′) qθ (θ|θ′)

exp[Q(g,X,θ)]
c(G,X,θ) p (θ) qθ (θ′|θ)

}

= min

{
1,

exp [Q (g,X, θ′)]

exp [Q (g,X, θ)]

c (G, X, θ)
c (G, X, θ′)

p (θ′)

p (θ)

qθ (θ|θ′)
qθ (θ′|θ)

}
.

The Metropolis-Hastings acceptance α (θ, θ′) depends on the ratio c (G, X, θ) /c (G, X, θ′),
whose exact evaluation is computationally infeasible even for very small networks. To
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be concrete, consider a small network with n = 10 agents. From (15) we know that

c (G, X, θ) =
∑
ω∈G

exp [Q (ω,X, θ)]. To compute the constant at the current parameter θ

we would need to evaluate the potential function for all 290 w 1027 possible networks with 10

agents and compute their sum. This task would take a very long time even for a state-of-the

art supercomputer. In general with a network containing n players, we have to sum over

2n(n−1) possible network configurations.24

3.2 Estimation Algorithm

To solve the estimation problem, I develop a variation of the exchange algorithm, first de-

veloped by Murray et al. (2006). This algorithm uses a double Metropolis-Hastings step to

avoid the computation of the normalizing constant c (G, X, θ) in the likelihood. This im-

provement comes with a cost: the algorithm may produce MCMC chains that have very

poor mixing properties (Caimo and Friel, 2010) and high autocorrelation. I partially correct

for this problem by carefully calibrating the proposal distribution.25

While several authors have proposed similar algorithms in the related literature on Ex-

ponential Random Graphs Models (ERGM),26 the models estimated with this methodology

typically have very few parameters and use data from very small networks. To the best of

my knowledge, this is the first attempt to estimate a high-dimensional model using data

from multiple networks.

In this section I describe the algorithm for a single network, while in the appendix I

provide the extension for multiple independent networks.27 This is especially important for

policy: schools may have unobserved differences that impact the network formation process

and using multiple networks may partially correct for that.

24A supercomputer that can compute 1012 potential functions in 1 second would take almost 40 million
years to compute the constant once for a network with n = 10 players. The schools used in the empirical
section have between 20 and 159 enrolled students. This translates into a minimum of 2380 and a maximum
of 225122 possible network configurations.

25In this paper I use a random walk proposal. Alternatively one could update the parameters in blocks or
use recent random block techniques as in Chib and Ramamurthy (2009) to improve convergence and mixing.

26Caimo and Friel (2010) use the exchange algorithm to estimate ERGM. They improve the mixing of
the sampler using the snooker algorithm. Koskinen (2008) proposes the Linked Importance Sampler Aux-
iliary variable (LISA) algorithm, which uses importance sampling to provide an estimate of the acceptance
probability. Another variation of the algorithm is used in Liang (2010).

27When the data consist of several independent school networks, I use a parallel version of the algorithm
that stores each network in a different processor. Each processor runs the simulations independently and the
final results are summarized in the master processor, that updates the parameters for next iteration. Details
in Appendix.
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The idea of the algorithm is to sample from an augmented distribution using an auxiliary

variable. At each iteration, the algorithm proposes a new parameter vector θ′, drawn from a

suitable proposal distribution qθ(θ
′|θ); in the second step, it samples a network g′ (the aux-

iliary variable) from the likelihood π (g′, X, θ′); finally, the proposed parameter is accepted

with a probability αex(θ, θ
′), such that the Markov chain of parameters generated by these

update rules, has the posterior (16) as unique invariant distribution.

I first describe the algorithm used to sample a network from the stationary distribution

of the model; then I provide the full algorithm for estimation of the posterior.

3.2.1 Network Simulations

To use the exchange algorithm, I need to draw random samples from the stationary distri-

bution of the network formation model. Direct simulation is not possible because the nor-

malizing constant c (G, X, θ) is computationally infeasible, for the reasons explained above.

Therefore I rely on Markov Chain Monte Carlo simulation methods.

The algorithm used in this paper is similar to the Metropolis-Hastings algorithm pro-

posed in Snijders (2002).28 For a fixed parameter value θ, the algorithm simulates a Markov

chain of networks whose unique invariant distribution is (14). As the number of iterations

R becomes large, the simulated networks are (approximate) samples from the stationary

distribution of the model evaluated at parameter θ.

ALGORITHM 1 Fix a parameter value θ. At iteration r, with current network gr

1. Propose a network g′ from a proposal distribution

g′ ∼ qg (g′|gr) (19)

2. Update the network according to

gr+1 =

{
g′ with prob. αmh(gr, g

′)
gr with prob. 1− αmh(gr, g′)

(20)

where

αmh(gr, g
′) = min

{
1,

exp [Q(g′, X, θ)]

exp [Q(gr, X, θ)]

qg (gr|g′)
qg (g′|gr)

}
(21)

28I also experimented with the Simulated Tempering algorithm proposed in Mele (2010). The latter is
extremely useful when the stationary distribution of the network formation model has more than one mode.
It also improves the mixing of the chain. However, it does so by increasing the time needed to collect a
sample. In this context, a set of experiments with artificial data revealed virtually no difference between the
Simulated Tempering results and the simpler Metropolis-Hastings updates, so I use the latter in this paper.
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At each iteration a random network g′ is proposed, and the update is accepted with prob-

ability αmh(gr, g
′). The main advantage of this simulation strategy is that the acceptance

ratio (21) does not contain the normalizing constant c (G, X, θ) of the stationary distribution.

Each quantity in the acceptance ratio can be computed exactly.

The Metropolis-Hastings structure of the algorithm guarantees that the sampled networks

are drawn from the stationary equilibrium of the model.

PROPOSITION 3 The updates in ALGORITHM 1 produce a Markov Chain of networks.

1. The unique invariant distribution of ALGORITHM 1 is the stationary equilibrium of
the model at parameter θ

lim
r→∞

Pr (Gr = g|G0 = g0, X, θ) = π (g,X, θ) (22)

2. The Markov Chain generated by ALGORITHM 1 is uniformly ergodic, i.e. there exist
constants B > 0 and κ ∈ (0, 1) such that

max
g0∈G

∥∥∥P(r)
θ (·|g0)− π (·, X, θ)

∥∥∥
TV
≤ Bκr (23)

where P(r)
θ (g|g0) is the r-th step transition probability of the algorithm, starting at

network g0 and using parameter θ; and ‖·‖TV is the total variation distance.

3. For any initial network g0, the rate of convergence can be bounded as

2 sup
g∈G

∣∣∣π (g, θ)− P(r)
θ (g|g0)

∣∣∣ ≤√1− π (g0, θ)

π (g0, θ)
λ∗ (θ)r (24)

where λ∗ (θ) = max {λ2 (θ) , |λ2n(n−1) (θ) |} is the second highest eigenvalue of ALGO-
RITHM 1’s transition matrix.

Proof. See Appendix B

The first part of the proposition confirms that the algorithm converges to the stationary

equilibrium of the model. Therefore, one can generate samples from the stationary equilib-

rium of the model using a sufficiently long chain generated by ALGORITHM 1. The second

part establishes uniform convergence to the stationary distribution and the last statement

of the proposition bounds the rate of convergence. Formula (24) is a classical result on

Markov chain convergence (see Diaconis and Stroock (1991) or Meyn and Tweedie (2009)).

For certain regions of the parameter space, the convergence would be fast, while for other

parameter regions the rate of convergence could be extremely slow. Recent work on similar

21



algorithms for the simulation of exponential random graphs, have shown that in several cases

the convergence rates are so slow that the simulation is infeasible. Diaconis and Chatterjee

(2011) and Bhamidi et al. (forthcoming) show that for the simplest Erdos-Renyi random

graph, the bound to the convergence rate scales up with m log(m), where m is the total

number of states. In our setting, m = 2n(n−1). However, the bounds in these papers are for

any parameter θ and for any initial network g0. This implies that the researcher can improve

convergence through a careful choice of the initial network and proposal distributions, as

indicated in (24).

In the empirical implementation of the algorithm, I use several alternative proposals

qg (·|·). First, a move that updates only one link per iteration, proposing to swap the link

value. At each iteration a random pair of agents (i, j) is selected from a discrete uniform

distribution, and it is proposed to swap the value of the link gij to 1−gij. Second, to improve

convergence, I allow the sampler to propose bigger moves: with a small probability pinv, the

sampler proposes a to invert the network matrix, i.e. g′ = 1 − g, and the proposal is ac-

cepted with probability αmh(g, g
′).29 These proposals directly modify the transition matrix

of ALGORITHM 1, decreasing the value of the second highest eigenvalue.

The choice of the initial network is quite trivial in this model, and it is given by the

observed network g. There are two reasons for this choice. First, in the high density region

of the posterior the observed network g must have high probability according to the model.

This decreases
√

1−π(g0,θ)
π(g0,θ)

. Second, the result in Lemma 1 in Appendix B shows that this

choice guarantees faster convergence of the approximate posterior simulation algorithm to

the correct posterior.

3.2.2 Posterior Simulation

I propose a modified version of the exchange algorithm developed by Murray et al. (2006) to

sample from distributions with intractable constants. In the original algorithm, one needs

to draw exact samples from the stationary equilibrium of the model. However, this would

require an enormous number of steps using the network simulation algorithm. My strategy

is instead to exploit the result in Lemma 1 (in Appendix B) to decrease the number of

simulations needed to collect an approximate sample from the stationary equilibrium. The

Lemma essentially implies that my approximate algorithm and the exact algorithm have the

same probability of accepting the proposed parameter.30

29This move is suggested in Geyer (1992) and Snijders (2002). Snijders (2002) argues that this is particu-
larly useful in case of a bimodal distribution.

30The details require a careful use of the detailed balance condition for the network simulation model. See
Appendix B.
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The samples from the posterior distribution are generated using the following steps

ALGORITHM 2 (APPROXIMATE EXCHANGE ALGORITHM)
Fix the number of simulations R. At each iteration t, with current parameter θt = θ and
network data g:

1. Propose a new parameter θ′ from a distribution qθ(·|θ),

θ′ ∼ qθ(·|θ). (25)

2. Start ALGORITHM 1 at the observed network g, iterating for R steps using param-
eter θ′ and collect the last simulated network g′

g′ ∼ P(R)
θ′ (g′|g). (26)

3. Update the parameter according to

θt+1 =

{
θ′ with prob. αex (θ, θ′, g′, g)
θ with prob. 1− αex (θ, θ′, g′, g)

where

αex(θ, θ
′, g′, g) = min

{
1,

exp [Q(g′, X, θ)]

exp [Q(g,X, θ)]

p (θ′)

p (θ)

qθ (θ|θ′)
qθ (θ′|θ)

exp [Q(g,X, θ′)]

exp [Q(g′, X, θ′)]

}
. (27)

The appeal of this algorithm is that all quantities in the acceptance ratio (27) can be eval-

uated: there are no integrals or normalizing constants to compute. I provide the algorithm

details, and the relative proofs of convergence to the posterior and some evidence on mixing

in Appendix B. The algorithm used to estimate the model using multiple school networks

on parallel processors is an extension of ALGORITHM 2. I also present it in Appendix B.

Here I explain intuitively why the sampler works, with the help of Figure 2.

For ease of exposition, suppose that the prior is relatively flat, so that p(θ)/p(θ′) ' 1.

Suppose we start the sampler from a parameter θ that has high posterior probability, given

the data g. That is, there is good agreement between the data and the parameter, so it is

likely that the data are generated from a model with parameter θ. This is displayed on the

left panel of Figure 2. Now, suppose we propose a parameter θ′ that belongs to a low prob-

ability region of the posterior. This means that there is a low probability that the observed

network g is generated by parameter θ′. As a consequence the ratio

p(θ′|g,X)

p(θ|g,X)
' π(g,X, θ′)

π(g,X, θ)
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Figure 2: The Exchange Algorithm

A. Posterior Distribution B. Two Stationary Equilibria

The graph on the left is the posterior distribution, given the data. The graph on the right represents two
stationary equilibria of the model, one at parameter θ (blue) and one at parameter θ′ (red). The iteration
t starts with parameter θ. It is proposed to update the parameter using proposal θ′. The algorithm start
sampling networks from the stationary distribution at parameter θ′ (red) and quickly moves from g to g′.

The probability of accepting the proposed parameter θ′ is proportional to the ratio π(g′,X,θ)
π(g′,X,θ′)

π(g,X,θ′)
π(g,X,θ) , which

is small as indicated in the graph. In summary, a move from the high density region of the posterior (θ) to
a low density region (θ′) is likely to be rejected. For the same reasoning a move from θ′ to θ is very likely to
be accepted. Therefore the algorithm produces samples from the correct posterior distribution.

would be very small, as indicated in the right panel of Figure 2. Let’s start the network

simulations using parameter θ′. The sequence of simulated networks will start approaching

the new stationary distribution π(·, X, θ′), moving away from the stationary distribution

π(·, X, θ). This is indicated in Figure 2 with a simulation of 2 steps: starting from g we obtain

two networks, g1 and g′. Network g′ is closer to a high probability region of π(·, X, θ′) than

to a high probability region of π(·, X, θ), as long as the algorithm was run for a sufficiently

large number of steps R. It also follows that the ratio

π(g′, X, θ)

π(g′, X, θ′)
(28)

is small. Notice that

π(g′, X, θ)

π(g′, X, θ′)

π(g,X, θ′)

π(g,X, θ)
=

exp [Q(g′, X, θ)]

exp [Q(g,X, θ)]

exp [Q(g,X, θ′)]

exp [Q(g′, X, θ′)]

c(G, X, θ′)
c(G, X, θ)

c(G, X, θ)
c(G, X, θ′)

=
exp [Q(g′, X, θ)]

exp [Q(g,X, θ)]

exp [Q(g,X, θ′)]

exp [Q(g′, X, θ′)]
.
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This ratio is contained in (27). As a consequence the acceptance ratio of the exchange

algorithm is low and the proposed parameter θ′ is very likely to be rejected. Let’s repeat

the reasoning while starting the sampler at θ′ and proposing an update θ: this proposal is

very likely to be accepted by the same intuitive argument.

In summary, the sampler is likely to accept proposals that move towards high density

regions of the posterior, but it is likely to reject proposals that move towards low density

regions of the posterior. Therefore, it produces samples of parameters that closely resemble

draws from the posterior distribution. The formal statement about ergodicity is contained

in the following theorem.

THEOREM 2 (Ergodicity of the Approximate Exchange Algorithm). The approximate
exchange algorithm is ergodic, and it converges to the correct posterior distribution.

1. (Convergence)) Let P̃
(s)
R (θ0, ·) be the s-th step transition of the approximate ex-

change algorithm, when the auxiliary network is sampled using R steps of the network
simulation algorithm and the initial parameter of the simulation is θ0. Let ‖·‖TV be
the total variation distance and p (·|g,X) the posterior distribution.
Then, for any ε > 0 there exist R0 ∈ N and S0 ∈ N such that for any R > R0 and
s > S0 and any initial parameter vector θ0 ∈ Θ∥∥∥P̃ (s)

R (θ0, ·)− p (·|g,X)
∥∥∥
TV
≤ ε (29)

2. (WLLN) A Weak Law of Large Numbers holds: for any initial parameter vector θ0 ∈ Θ
and any bounded integrable function h(·)

1

S

S∑
s=1

h (θs)
P−→
∫

Θ

h (θ) p (θ|g,X) dθ (30)

Proof. In Appendix B.

The theorem states that the algorithm produces good samples as long as the number of steps

of the network simulation algorithm is big enough and the algorithm is run for a sufficient

number of iterations.

An important tuning parameter of the algorithm is R, the number of network simula-

tions to be performed in the second step. As R → ∞ the algorithm converges to the exact

exchange algorithm of Murray et al. (2006), producing exact samples from the posterior dis-

tribution. At the same time an higher value of R would increase the computational cost and

result in a higher rejection rate for the proposed parameters. I do not propose an optimal
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way to choose R, but I provide some evidence with simulated data in Appendix B, showing

that there is not much difference in the estimates or convergence using different R’s. The

value of R has a stronger effect on the standard deviation than on the mean of the posterior,

as one would expect.

3.3 Connections to Exponential Random Graphs

Considerable attention has been paid to exponential random graph models (ERGM).31 The

latter are statistical models of random network formation, with complex dependence struc-

tures among links. Exponential random graphs have been successfully used to fit social

networks, providing a useful benchmark for alternative models. However, as any random

network formation model, they lack the equilibrium microfoundations of the strategic liter-

ature.

A remarkable feature of my model is that it contains the exponential random graph

models as a special case. Assume that the utility functions u, m and v depend linearly

on a vector of parameters. Define θu = (θu1, θu2, ..., θuP )′, θm = (θm1, θm2, ..., θmL)′ and

θv = (θv1, θv2, ..., θvS)′. Define the function H : RA × RA → R.

ASSUMPTION 4 (Linearity of Utility) The utility functions are linear in parameters

uij = u (Xi, Xj, θu) =
P∑
p=1

θupHup (Xi, Xj) = θ′uHu (Xi, Xj)

mij = m (Xi, Xj, θm) =
L∑
l=1

θmlHml (Xi, Xj) = θ′mHm (Xi, Xj)

vij = v (Xi, Xj, θv) =
S∑
s=1

θvsHvs (Xi, Xj) = θ′vHv (Xi, Xj)

This assumption leaves room for many interesting specifications. In particular, the functions

H do not exclude interactions among different characteristics, for example interactions of

race and gender of both individuals. We can consider different specifications, including

different sets of variables for direct, mutual and indirect links. Interactions of individual and

network-level attributes are also possible.

31Frank and Strauss (1986) developed the theory of Markov random graphs. These are models of random
network formation in which there is dependence among links: the probability that a links occur depends
on the existence of other links. Wasserman and Pattison (1996) generalized the Markov random graphs to
general dependence structures, developing the Exponential Random graph models. Snijders (2002) reviews
these models and the related estimation techniques.
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The main consequence of the linearity assumption is that the stationary equilibrium of

the model belongs to the exponential family (Lehman (1983)).

PROPOSITION 4 (Exponential Family Likelihood)
Under Assumptions 1-4, the stationary distribution π (g,X) belongs to the exponential
family, i.e., it can be written in the form

π (g,X) =
exp [θ′t (g,X)]∑

ω∈G
exp [θ′t (ω,X)]

, (31)

where θ = (θu, θm, θv)
′ is a (column) vector of parameters and t (g,X) is a (column) vector

of canonical statistics.

Proof. See Appendix A

The vector t (g,X) = (t1 (g,X) , ..., tK (g,X)) is a vector of sufficient statistics for the

network formation model. This vector can contain the number of links, the number of whites-

to-whites links, the number of male-to-female links and so on. Interactions between different

variables are possible, e.g. the number of black-males-to-white-females links, or interactions

of individual controls with school-level controls.

This likelihood is very similar to the one of exponential random graph models. My theo-

retical model can be interpreted as providing the microfoundations for exponential random

graphs. In this sense, we can interpret the ERGM as the stationary equilibrium of a strategic

game of network formation, where myopic agents follow a stochastic best response dynamics

and utilities are linear functions of the parameters.

3.4 Identification and Practical Implementation

The identification of parameters for the linear utility case follows from the theory of exponen-

tial families (Lehman, 1983). Identification is guaranteed as long as the sufficient statistics

t(g,X) are not linearly dependent. The nonlinear case is more complex and there are no

general conditions that guarantee identification.32 For this reason, I consider estimation of

the model only in the linear case.

32Geyer (1992) provides some guidance in this matter. He provides conditions that guarantee convergence
of the Monte Carlo Maximum Likelihood estimate to the exact MLE. However, to the best of my knowledge,
there are no sufficient conditions that guarantee identification in this setting.
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The Bayesian framework can help to achieve identification of the parameters in the non-

linear case, by careful use of prior distributions. This is standard practive in the DSGE

estimation literature, where parameters are often ill-identified and prior distributions are

used to produce more precise estimates (?). This possibility is not explored here, and it is

left to future research.

The linear case also allows for specifications of the utility function involving network-level

controls, when estimation is performed using multiple networks. This can be achieved by a

specification of the parameters

θp = θp0 +
C∑
c=1

θpcZc (32)

where Zc is a network-level variable. This specification allow network fixed effects and inter-

actions of network controls with individual controls. The estimation methodology presented

above can be applied to this specification without any change. However, estimation of a

model with random coefficients would require significant additional computational effort

(see Appendix C).

As noted above, it is possible to modify the precision of the estimates when there is some

previous information that can be incorporated in the prior. I choose somewhat vague priors

for the parameters, in order to extract most of the information from the data. I assume

independent normal priors

p (θ) = N (0, 3IP ) , (33)

where P is the number of parameters.

The proposal distribution for the posterior simulation is

qθ(·|θ) = N (0, δΣ) , (34)

where δ is a scaling factor and Σ is a covariance matrix. I use an adaptive procedure to

determine a suitable Σ. I start the iterations with Σ = λIP , where λ is a vector of standard

deviations. I choose λ so that the sampler accepts at least 20%-25% of the proposed param-

eters, as is standard in the literature (Gelman et al., 2003; Robert and Casella, 2005). I run

the chain and monitor convergence using standard methods. Once the chains have reached

approximate convergence, I estimate the covariance matrix of the chains and use it as an

approximate Σ. The scaling factor is δ = 2.382/P as suggested in Gelman et al. (1996).

The network sampler uses a proposal qg (g|g′), that selects a link to be updated at each

period according to a discrete uniform distribution. The probability of network inversion is

pinv = 0.01.

The posterior distributions shown in the graphs are obtained with a simulation of 100000
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Figure 3: A School Network

white=Whites; blue = African Americans; yellow = Asians; green = Hispanics; red = Others

Note: The graphs represent the friendship network of a school extracted from AddHealth. Each
dot represents a student, each arrow is a friend nomination. The colors represent racial groups.

Metropolis-Hastings updates of the parameters. These simulations start from values found

after extensive experimentation with different starting values and burn-in periods, monitor-

ing convergence using standard methods. For each parameter update, I simulate the network

for 3000 iterations to collect a sample from the stationary distribution.

3.5 The Add Health Data

The National Longitudinal Study of Adolescent Health (Add Health) is a dataset contain-

ing information on a nationally representative sample of US schools. The survey started

in 1994, when the 90118 participants were entering grades 7-12, and the project collected

29



data in four successive waves.33 Each student responded to an in-school questionnaire, and

a subsample of 20745 was given an in-home interview to collect more detailed information

about behaviors, characteristics and health status. In this paper I use only data from the

saturated sample of Wave I, containing information on 16 schools. Each student in this

sample completed both the in-school and in-home questionnaires, and the researchers made

a significant effort to avoid any missing information on the students.34

I exclude the two largest schools, school 58 and 77, which have respectively 811 and

1664 students, while the third largest school has 159 students. This is for convenience: the

estimation routine is much faster when schools are of similar size, since the parallel version

of the exchange algorithm can propose a new parameter vector only after all the school level

simulations are done. Therefore the speed of the algorithm depends on the simulation speed

of the largest school. The simulation of a school with more than 800 or 1600 students would

significantly slow down the simulations and estimation routines. My final sample includes

1139 students enrolled in 14 schools.

The in-school questionnaire collects the social network of each participant. Each student

was given a school roster and was asked to identify up to five male and five female friends.35

I use the friendship nominations as proxy for the social network in a school. The resulting

network is directed : Paul may nominate Jim, but this does not necessarily imply that Jim

nominates Paul.36 The model developed in this paper takes this feature of the data into

account.

A sub-sample of 20745 students was also given an in-home questionnaire, that collected

most of the sensible data. I use data on racial group, grade and gender of individuals. A stu-

dent with a missing value in any of these variables is dropped from the sample. Each student

that declares to be of Hispanic origin is considered Hispanic. The remaining non-Hispanic

students are assigned to the racial group they declared. Therefore the racial categories are:

White, Black, Asian, Hispanic and Other race. Other race contains Native Americans.

Additionally, I control for homophily in income. I construct the income of the family us-

33More details about the sampling design and the representativeness are contained in Moody (2001) and
the Add Health website http://www.cpc.unc.edu/projects/addhealth/projects/addhealth

34While this sample contains no missing covariate information for the students, there are several missing
values for the parental variables.

35One can think that this limit could bias the friendship data, but only 3% of the students nominated 10
friends (Moody, 2001). Moreover, the estimation routine could be easily extended to deal with missing links,
as reported in Appendix.

36Some authors do not take into account this feature of the data and they recode the friendships as mutual:
if a student nominates another one, the opposite nomination is also assumed.
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ing a question from the parent questionnaire.37 In the estimated models I control for income

difference between the students and income levels.

There may be some unobservable variables that affect network formation. For example

some students may be ”cool” and receive more friendship links than others. To partially

control for such effects, I use information from the interviewer remarks about the physical at-

tractiveness and personality of the student interviewed. I define a dummy variable ”beauty”,

which is equal to 1 if the interviewer told that the students was very attractive. Analogously,

the dummy ”personality” is equal to 1 if the interviewer responded that the personality of

the student was very attractive. Additionally, I control for school fixed effects using school

dummies. As an alternative to such approach, in Appendix I provide an extension of the

model and estimation method that allows for unobserved heterogeneity with a significant

additional computational cost.

Descriptive statistics are in Table 1. The smallest school has 20 enrolled students while

the largest used in estimation has 159 students. There is a certain amount of variation in

the number of links: some schools are more social and form many links per capita, while

other schools have very few friendship nominations. The ratio of boys to girls is balanced in

almost all schools, except school 369, where female students are large majority.

Panel A summarizes the racial composition. Many schools are almost racially homoge-

neous. School 1, 28, 126 and 175 are more diverse as reflected in the Racial Fragmentation

index. This is an index that measure the degree of heterogeneity of a population. It is

interpreted as the probability that two randomly chosen students in the school belong to

different racial groups.38 An index of 0 indicates that there is only one racial group and the

population is perfectly homogeneous. Higher values of the index represents increasing levels

of racial heterogeneity. Panel B summarizes the grade composition. Most schools offer all

grades from 7th to 12th, with homogeneous population across grades. Several schools only

have lower grades.

Panel C analyzes the racial and gender segregation of each school friendship network.

The level of segregation is measured with the Freeman (1972) segregation index. If there is

37There are several cases in which the family income is missing. For those observations, I imputed values
drawn from the unconditional income distribution of the community. An alternative but computationally
very costly alternative is to introduce an additional step in the simulation, in which the imputation of missing
incomes is done at each iteration.

38If there are K racial groups and the share of each race is sk, the index is

FRAG = 1−
K∑
k=1

(sk)2 (35)
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no segregation, the number of links among individuals of different groups does not depend

on the group identity. The index measures the difference between the expected and actual

number of links among individuals of different groups. An index of 0 means that the actual

network closely resembles one in which links are formed at random. Higher values indicate

more segregation. The index varies between 0 and 1, where the maximum corresponds to a

network in which there are no cross-group links.

Since most schools are racially homogeneous, the measured segregation is zero. Schools

with a racially diverse student population show high level of segregation for each racial group.

On the other hand gender segregation is quite low and homogeneous across schools.

4 Empirical Results

In Table 2, I show the estimation results for the full structural model, using the 14 schools

in the Add Health saturated sample. The table summarizes the marginal posterior distribu-

tions of the estimated parameters with posterior mean, median, standard deviation, 5th and

95th quantiles. Figures 4 and 5 display the marginal posterior distributions and in red the

posterior mean. The blue dotted line represents the prior distribution. In a web appendix,

I report results from alternative specifications and estimates using only one network.

Each estimate measures the marginal effect of the variable: for example, the parameter

associated with the direct utility of WHITE-WHITE measures the marginal utility of a white

student when forming a link to another white student, other things being equal.

Panel A shows the estimates for the direct utility. There is evidence of homophily in pref-

erences: individuals prefer to form friendship links to students of the same gender, grade,

race, other things being equal. Racial homophily is not homogenous across groups: African

Americans show stronger preference for same race students, while the group of Hispanics has

the lowest magnitude. Grade homophily is also very high.

Furthermore, there is a clear difference in how the different racial groups respond to

a change in the fraction of their own group in the population. While Whites and African

Americans’ preference for same race students decreases with the fraction of their group in the

population, the opposite occurs for Hispanics. This result is important, because it implies

that different racial groups have different responses to the desegregation policies: some group

may engage more in interracial friendships, while some group may segregate even more.

Physically attractive students have similar propensity to form friendships than the rest

of the population. The same holds for students with very attractive personalities. Nonethe-

less, there is a propensity to form links to individuals that are physically attractive and have
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Table 2: Posterior Distribution, Structural Model

mean median std. dev. 5 pctile 95 pctile
A. Direct utility (uij)

CONSTANT -4.8615 -4.8325 0.3124 -5.4380 -4.4058
SAME GENDER 0.1340 0.1366 0.1091 -0.0517 0.3062
SAME GRADE 2.0287 2.0262 0.1298 1.8141 2.2460
WHITE-WHITE 0.4408 0.4383 0.1654 0.1714 0.7288
BLACK-BLACK 0.6802 0.6886 0.1312 0.4704 0.8727
HISP-HISP 0.1649 0.1742 0.0856 0.0143 0.2904
ATTRACTIVE i (Physical) -0.0091 -0.0100 0.1547 -0.2621 0.2546
ATTRACTIVE j (Physical) 0.1876 0.1727 0.1490 -0.0300 0.4442
ATTRACTIVE i (Personality) 0.0095 0.0093 0.1411 -0.2196 0.2426
ATTRACTIVE j (Personality) 0.2370 0.2337 0.1209 0.0401 0.4383
LOG OF (INCOME i/INCOME j) -0.0182 -0.0172 0.0266 -0.0630 0.0230
LOG OF (INCOME i × INCOME j) 0.0685 0.0685 0.0277 0.0237 0.1147
FRACTION WHITES -1.5015 -1.4433 0.4602 -2.3086 -0.8500
FRACTION BLACKS 1.9019 1.9234 0.1829 1.5583 2.1614
FRACTION HISP 0.2845 0.2547 0.5496 -0.5504 1.2862
WHITE-WHITE * % WHITES -0.5351 -0.5470 0.1752 -0.7980 -0.2179
BLACK-BLACK * % BLACKS -0.1780 -0.1227 0.3854 -0.8700 0.3626
HISP-HISP * % HISP 1.4607 1.5407 1.4443 -0.9003 3.5895
SCHOOL 1 -1.3334 -1.3416 0.4418 -2.0527 -0.6015
SCHOOL 2 1.6555 1.6527 0.2685 1.2191 2.1068
SCHOOL 3 0.3559 0.3461 0.3108 -0.1381 0.8907
SCHOOL 4 0.8271 0.8159 0.3129 0.3315 1.3665
SCHOOL 5 1.1032 1.1076 0.2803 0.6407 1.5603
SCHOOL 6 -0.7804 -0.7944 0.2720 -1.2053 -0.3189
SCHOOL 7 0.8817 0.8709 0.2863 0.4229 1.3574
SCHOOL 8 -0.7325 -0.7014 0.3790 -1.4188 -0.1569
SCHOOL 9 -0.0591 -0.1104 0.3794 -0.6177 0.6102
SCHOOL 10 2.5418 2.5386 0.3069 2.0397 3.0434
SCHOOL 11 -1.6844 -1.6501 0.3983 -2.3642 -1.0801
SCHOOL 12 1.8666 1.8578 0.2731 1.4308 2.3121
SCHOOL 13 -0.6248 -0.6084 0.3126 -1.1625 -0.1363

B. Mutual utility (mij)

CONSTANT 3.0074 3.0012 0.3501 2.4445 3.5969
SAME GENDER 1.2099 1.1865 0.1862 0.9457 1.5733
SAME GRADE -1.6620 -1.6505 0.2772 -2.1371 -1.2159
WHITE-WHITE 0.1821 0.1950 0.1450 -0.0651 0.4044
BLACK-BLACK -0.0707 -0.0591 0.2547 -0.4805 0.3512
HISP-HISP 0.7850 0.7719 0.1337 0.5703 1.0088
BOTH ATTRACTIVE (Physical) 0.1050 0.1037 0.3255 -0.4228 0.6380
BOTH NOT ATTRACTIVE (Physical) 0.0577 0.0693 0.2180 -0.3156 0.3920
BOTH ATTRACTIVE (Personality) -0.1538 -0.1370 0.2371 -0.5641 0.2074
BOTH NOT ATTRACTIVE (Personality) -0.1279 -0.1446 0.1762 -0.4055 0.1924

C. Indirect utility and Popularity (vij)

CONSTANT -0.1116 -0.1099 0.0523 -0.2002 -0.0233
SAME GENDER -0.0992 -0.0971 0.0414 -0.1698 -0.0352
SAME GRADE 0.0224 0.0214 0.0288 -0.0246 0.0706
WHITE-WHITE 0.1535 0.1514 0.0484 0.0765 0.2343
BLACK-BLACK 0.1657 0.1613 0.0545 0.0831 0.2638
HISP-HISP 0.1673 0.1678 0.1083 -0.0141 0.3435

Estimated posterior distribution for the full structural model. The estimates are obtained with a sample of
100000 parameter simulations, and 3000 network simulations for each parameter proposal.
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Figure 4: Posterior Distribution, Full Structural Model

Estimated posterior distribution for the full structural model. Each graph shows the histogram of the simu-
lation output. The red line indicates the posterior mean, while the blue dotted line is the prior distribution.
The estimates are obtained with a sample of 100000 parameter simulations and 3000 network simulations
for each proposed parameter.

attractive personalities. Income differences decrease the likelihood of friendship, while higher

income levels increase the number of friendships formed. The magnitude of the income ef-

fects is smaller than the effect of racial preferences. The total number of friends is higher in

schools with higher fraction of minorities. The estimates for the school dummies show that

there is substantial heterogeneity in the network formation process across schools, which is
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Figure 5: Posterior Distribution, Full Structural Model (continued)

Estimated posterior distribution for the full structural model. Each graph shows the histogram of the simu-
lation output. The red line indicates the posterior mean, while the blue dotted line is the prior distribution.
The estimates are obtained with a sample of 100000 parameter simulations and 3000 network simulations
for each proposed parameter.

not accounted for by the individual characteristics.

Panel B shows the estimated parameters of the mutual utility. An additional mutual link

provides positive additional utility. There is evidence of homophily in mutual links for gen-

der, Whites and Hispanics. A mutual link to a student of the same grade decreases utility.

The mutual link provides additional utility if the students have similar physical attractive-
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ness and their personalities do not coincide.

Panel C contains estimates of the indirect and popularity effects. The negative value of

the constant can be interpreted as a congestion effect: linking to students with many friends

decreases utility. There is evidence of homophily in the indirect and popularity effects (ex-

cept for gender), which increases the incentives of the students to segregate.

As a benchmark to evaluate policy experiments, I also estimated a model without mu-

Table 3: Posterior Distribution, Direct Utility only

mean median std. dev. 5 pctile 95 pctile

CONSTANT -5.3194 -5.3041 0.9443 -6.8908 -3.7122
SAME GENDER 0.4041 0.4033 0.0882 0.2610 0.5523
SAME GRADE 2.2564 2.2567 0.1048 2.0874 2.4300
WHITE-WHITE 1.6410 1.6368 0.2626 1.2165 2.0803
BLACK-BLACK 0.7567 0.7627 0.3475 0.1711 1.3160
HISP-HISP 0.9513 0.9561 0.3247 0.4061 1.4712
ATTRACTIVE i (Physical) 0.0764 0.0770 0.1401 -0.1603 0.3046
ATTRACTIVE j (Physical) 0.1713 0.1699 0.1353 -0.0461 0.4014
ATTRACTIVE i (Personality) 0.0385 0.0405 0.1403 -0.1965 0.2647
ATTRACTIVE j (Personality) 0.2914 0.2900 0.1354 0.0652 0.5131
LOG OF INCOME i/INCOME j -0.0114 -0.0114 0.0248 -0.0521 0.0296
LOG OF INCOME i × INCOME j 0.0669 0.0663 0.0254 0.0274 0.1107
FRACTION WHITES -1.0100 -0.9778 1.0678 -2.8420 0.6912
FRACTION BLACKS 0.5905 0.6719 0.9179 -0.9582 2.0499
FRACTION HISP -2.6683 -2.6526 1.7131 -5.6238 0.1307
WHITE-WHITE * FRACTION WHITE -1.4795 -1.4737 0.3316 -2.0371 -0.9475
BLACK-BLACK * FRACTION BLACKS 0.8718 0.8553 0.6620 -0.2192 1.9868
HISP-HISP * FRACTION HISP -0.0297 0.0176 1.6081 -2.7317 2.5566
SCHOOL 1 -0.2844 -0.2649 0.6093 -1.2991 0.6866
SCHOOL 2 1.6957 1.6963 0.3413 1.1257 2.2615
SCHOOL 3 -0.1003 -0.0925 0.4302 -0.8377 0.5974
SCHOOL 4 0.5644 0.5647 0.4066 -0.1070 1.2481
SCHOOL 5 0.8732 0.8790 0.3962 0.1987 1.5249
SCHOOL 6 -0.2655 -0.2681 0.5927 -1.2511 0.7287
SCHOOL 7 0.6230 0.6206 0.3994 -0.0366 1.2829
SCHOOL 8 0.2385 0.2458 0.8298 -1.1460 1.6260
SCHOOL 9 -0.2277 -0.2259 0.5018 -1.0423 0.6200
SCHOOL 10 2.5708 2.5787 0.4515 1.8136 3.3045
SCHOOL 11 -0.6995 -0.7252 1.1728 -2.6429 1.2818
SCHOOL 12 1.4434 1.4477 0.3925 0.7884 2.0838
SCHOOL 13 -0.1609 -0.1605 0.4667 -0.9391 0.6283

Estimated posterior distribution for the model with utility from direct links only. The estimates are obtained
with a sample of 100000 parameter simulations, and 3000 network simulations for each parameter proposal.

tual, indirect and popularity effects. The results are shown in Table 3. In this specification,

the homophily effects in the direct utility are stronger than in the richer model. This is

because in the full model part of the homophily effects are captured by indirect utility and

popularity. Whites have much higher marginal utility of forming a link to a person of the

same race than in the full model. Moreover, this specification would suggest that Whites

preferences for same race contacts are stronger than Blacks, which is the opposite result
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found in the full model.

An increase in the fraction of same race individuals has asymmetric effects on the racial

groups: Whites and Hispanics decrease their links, while African Americans form more

friendships. This is different from the full model.

4.1 Policy Experiments

I use the estimated model to predict how alternative policies affect the network structure.

Policy makers may be interested in pursuing policies that promote racial integration, or they

may consider policies that create separate schools for boys and girls. Simulations of the

model in alternative scenarios can provide a valuable benchmark on the possible effects of

such policies.

I consider the effectiveness of busing programs in promoting interracial integration.

Using the posterior distribution estimated in Table 2, I simulate several busing programs

that redistribute students of different racial groups among schools 88 and 106 of my sample.

These are two schools with an homogeneous student population: 98.9% Whites and 96.3%

African Americans, respectively. The simulated policies randomly select several (white) stu-

dents from school 88 and enroll them in school 106; the same number of (black) students is

randomly selected from school 106 and enrolled in school 88. This allows me to modify the

ratio of Whites and African Americans in both schools and predict the levels of segregation

and welfare implied by the policy.39

Using 1000 draws from the estimated posterior distribution, I run the network formation

model for 10000 iterations after the policy change (using ALGORITHM 1) and compute seg-

regation and welfare of the realized networks. I use Freeman’s segregation index (see Freeman

(1972) and Appendix B) to measure segregation for the relevant groups: Whites, African-

Americans and gender. The welfare measure is the total utility of the school, i.e. the sum of

all students’ utilities. I simulate the model using both the full structural specification and

the specification with direct utility only, to compare the policy implications. The results of

the simulations are shown in Figures 6, 7, 8 and 9. The figures report the average segrega-

tion and welfare as a function of the fraction of Whites and African Americans in the school.

The blue dots are the average welfare and segregation obtained from each simulation. The

39There are several alternative ways to implement this desegregation policy. For example, one could select
students based on their race, while keeping a balance for gender and income distribution. My implementation
is simple. I order students of different racial groups based on their numerical ID in the data (from lowest to
highest). If I need to implement a policy that re-assigns 10 students, I select the first 10 students in the list.
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Figure 6: Policy Experiments for School 88 (Structural Model)

The policy experiment consists of swapping African American and White students among schools 88 and
106. The result is a change in the fraction of racial groups in the schools. The blue dots are the average
segregation or welfare obtained in the simulations for each policy experiment. The vertical dotted line
indicates the perfect integrated case. The red dotted line displays a cubic polynomial interpolation of the
simulation results. Each simulated result was obtained with a sample of 1000 draws from the posterior
distribution and a 10000 iterations of the network formation model for each posterior draw.

vertical dotted line indicates the situation of perfect integration among schools, i.e. a policy

where the students of each racial group are equally split among the schools. The red dotted

line is a cubic polynomial interpolation of the simulation results.40

The simulations provide several results. First, a policy that implements perfect integra-

tion among the two schools is not optimal, both in terms of welfare and segregation. Perfect

racial integration among the schools does not minimize expected segregation in the network

of friendships and does not maximize welfare. A certain degree of segregation among schools

is necessary to increase interracial contact and welfare within schools.

Second, the policy does not have the same effect on both schools. The comparison of

40The curve is fitted using least squares and all the coefficients are statistically significant.
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Figure 7: Policy Experiments for School 88 (only direct links)

The policy experiment consists of swapping African American and White students among schools 88 and
106. The result is a change in the fraction of racial groups in the schools. The blue dots are the average
segregation or welfare obtained in the simulations for each policy experiment. The vertical dotted line
indicates the perfect integrated case. The red dotted line displays a cubic polynomial interpolation of the
simulation results. Each simulated result was obtained with a sample of 1000 draws from the posterior
distribution and a 10000 iterations of the network formation model for each posterior draw.

figures 6 and 8 shows that the relationship between the fraction of each racial group and

segregation is not the same. For school 88 the relationship is cubic, while for school 106 is

quadratic. This further complicates the design of a good desegregation program.

Third, the model with only direct utility provides different policy recommendations than

the full specification with mutual utility, indirect utility and popularity effects. This is quite

evident from the graphs on welfare. For school 88, an increase of African American enroll-

ment which does not exceed 50%, does not cause a dramatic change in welfare. The picture is

completely different when looking at Figure 7. In addition, the levels of segregation predicted

by the full specification are more extreme than the ones under the simpler specification.
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Figure 8: Policy Experiments for School 106 (Structural Model)

The policy experiment consists of swapping African American and White students among schools 88 and
106. The result is a change in the fraction of racial groups in the schools. The blue dots are the average
segregation or welfare obtained in the simulations for each policy experiment. The vertical dotted line
indicates the perfect integrated case. The red dotted line displays a cubic polynomial interpolation of the
simulation results. Each simulated result was obtained with a sample of 1000 draws from the posterior
distribution and a 10000 iterations of the network formation model for each posterior draw.

5 Conclusions

This paper develops and estimates a dynamic model of strategic network formation with

heterogeneous agents. The paper contributes to the economic literature on network forma-

tion in two ways. First, while most strategic models have multiple equilibria, I establish the

existence of a unique stationary equilibrium, which characterizes the likelihood of observing

a specific network structure in the data. As a consequence, I can estimate and identify

the structural parameters using only one observation of the network at a single point in

time. Second, I propose a Bayesian Markov Chain Monte Carlo algorithm that drastically

reduces the computational burden for estimating the posterior distribution. In this model,

the likelihood function cannot be evaluated or approximated with precision: a state-of-the-
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Figure 9: Policy Experiments for School 106 (only direct links)

The policy experiment consists of swapping African American and White students among schools 88 and
106. The result is a change in the fraction of racial groups in the schools. The blue dots are the average
segregation or welfare obtained in the simulations for each policy experiment. The vertical dotted line
indicates the perfect integrated case. The red dotted line displays a cubic polynomial interpolation of the
simulation results. Each simulated result was obtained with a sample of 1000 draws from the posterior
distribution and a 10000 iterations of the network formation model for each posterior draw.

art supercomputer would take several years to evaluate the likelihood once. To overcome

this problem, my algorithm generates samples from the posterior distribution and avoids the

evaluation of the likelihood. Using the properties of the stationary equilibrium, I reduce the

computational burden even further and I am able to study high dimensional models.

The model can be used to infer the effect of different policies on network structure. To

illustrate this point, I explore different desegregation policies in US schools. The model

simulations provide predictions about the expected levels of segregation and welfare implied

by busing programs. Perfect integration among schools could deliver unexpected results in

some contexts: segregation may increase and welfare decrease. In addition, the busing pro-

gram may have different effects in different schools. These results suggest that desegregation
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policies must be carefully designed to avoid unexpected outcomes.

The model can be easily extended to incorporate unobserved heterogeneity in individual

quality and preferences. The Bayesian estimation strategy can be adapted to estimate mod-

els with missing links, using data augmentation techniques. These improvements come with

a substantial increase in the computational burden, but also provide a more realistic model.

Both these extensions are reviewed and explained in Appendix C.

The methodology introduced in this work can be used in different settings. Models of

social interactions with sequential moves as in Nakajima (2007) share the same simple equi-

librium characterization presented in this work. In these models individuals interact in an

exogenous network and their actions are optimally chosen given the action of their neighbors.

The estimation techniques developed here are easily adapted to these settings.41

The methodology can be applied to the class of autologistic models in spatial econo-

metrics.42 The latter are models for spatial binary data that explicitly model the spatial

dependence among variables. The likelihood of these models has the same exponential form

with normalizing constant derived in this paper, but their estimation has relied on approx-

imate methods: Maximum Pseudolikelihood (Besag, 1974) or Markov Chain Monte Carlo

Maximum Likelihood (Geyer and Thompson, 1992). My estimation strategy provides a valid

alternative from a Bayesian perspective.
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A Proofs

Proof of Proposition 1

The potential is a functionQ from the space of actions to the real line such thatQ (gij, g−ij, X)−
Q
(
g′ij, g−ij, X

)
= Ui (gij, g−ij, X)−Ui

(
g′ij, g−ij, X

)
, for any ij.43 A simple computation shows

that, for any ij

Q (gij = 1, g−ij, X)−Q (gij = 0, g−ij, X) = uij + gjimij +
n∑
k=1
k 6=i,j

gjkvik +
n∑
k=1
k 6=i,j

gkivkj

= Ui (gij = 1, g−ij, X)− Ui (gij = 0, g−ij, X)

therefore Q is the potential of the network formation game. The welfare function is computed

as

W (g,X) =
n∑
i=1

Ui (g,X)

=
n∑
i=1

n∑
j=1

gijuij +
n∑
i=1

n∑
j=1

gijgjimij +
n∑
i=1

n∑
j=1

n∑
k=1
k 6=i,j

gijgjkvik +
n∑
i=1

n∑
j=1

n∑
k=1
k 6=i,j

gijgkivkj

=
n∑
i=1

n∑
j=1

gijuij + 2
n∑
i=1

n∑
j>i

gijgjimij +
n∑
i=1

n∑
j=1

n∑
k=1
k 6=i,j

gijgjkvik +
n∑
i=1

n∑
j=1

n∑
k=1
k 6=i,j

gijgkivkj

= Q (g,X) +
n∑
i=1

n∑
j>i

gijgjimij +
n∑
i=1

n∑
j=1

n∑
k=1
k 6=i,j

gijgkivkj

Proof of Proposition 2

1) The existence of Nash equilibria follows directly from the fact that the network formation

game is a potential game with finite strategy space. (see Monderer and Shapley (1996) for

details)

2) The set of Nash equilibria is defined as the set of g∗ such that, for every i and for every

gij 6= g∗ij
Ui
(
g∗ij, g

∗
−ij, X

)
≥ Ui

(
gij, g

∗
−ij, X

)
Therefore, since Q is a potential function, for every gij 6= g∗ij

Q
(
g∗ij, g

∗
−ij, X

)
≥ Q

(
gij, g

∗
−ij, X

)
43 For more details and definitions see Monderer and Shapley (1996).
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Therefore g∗ is a maximizer of Q. The converse is easily checked by the same reasoning.

3) Suppose gt = g∗. Since this is a Nash equilibrium, no player will be willing to change

her linking decision when her turn to play comes. Therefore, once the chain reaches a Nash

equilibrium, it cannot escape from that state.

4) The probability that the potential will increase from t to t+ 1 is

Pr
[
Q
(
gt+1, X

)
≥ Q

(
gt, X

)]
=

=
∑
i

∑
j

Pr
(
mt+1 = ij

)
Pr
[
Ui
(
gt+1
ij , gt−ij, X

)
≥ Ui

(
gtij, g

t
−ij, X

)∣∣mt+1 = ij
]︸ ︷︷ ︸

=1 because agents play Best Response, conditioning on mt+1

=
∑
i

∑
j

ρij = 1.

By part 3) of the proposition, a Nash network is an absorbing state of the chain. Therefore

any probability distribution that puts probability 1 on a Nash network is a stationary distri-

bution. For any initial network, the chain will converge to one of the stationary distributions.

It follows that in the long run the model will be in a Nash network, i.e. for any g0 ∈ G

lim
t→∞

Pr
[
gt ∈ NE

∣∣ g0
]

= 1.

Proof of Theorem 1

1. The sequence of networks [g0, g1, ...] generated by the network formation game is a markov

chain. Inspection of the transition probability proves that the chain is irreducible and ape-

riodic, therefore it is ergodic. The existence of a unique stationary distribution then follows

from the ergodic theorem (see Gelman et al. (1996) for details).

2. A sufficient condition for stationarity is the detailed balance condition. In our case this

requires

Pgg′πg = Pg′gπg′ (36)

where

Pgg′ = Pr
(
gt+1 = g′

∣∣ gt = g
)

πg = π
(
gt = g

)
Notice that the transition from g to g′ is possible if these networks differ by only one element

gij. Otherwise the transition probability is zero and the detailed balance condition is satisfied.
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Let’s consider the nonzero probability transitions, with g = (1, g−ij) and g′ = (0, g−ij). Define

∆Q ≡ Q (1, g−ij, X)−Q (0, g−ij, X).

Pgg′πg = Pr
(
mt = ij

)
Pr (gij = 0| g−ij)

exp [Q (1, g−ij, X)]∑
ω∈G

exp [Q (ω,X)]

= ρ (g−ij, Xi, Xj)×
1

1 + exp [∆Q]
× exp [Q (1, g−ij, X) +Q (0, g−ij, X)−Q (0, g−ij, X)]∑

ω∈G
exp [Q (ω,X)]

= ρ (g−ij, Xi, Xj)×
1

1 + exp [∆Q]
× exp [Q (1, g−ij, X)−Q (0, g−ij, X)] exp [Q (0, g−ij, X)]∑

ω∈G
exp [Q (ω,X)]

= ρ (g−ij, Xi, Xj)
exp [∆Q]

1 + exp [∆Q]

exp [Q (0, g−ij, X)]∑
ω∈G

exp [Q (ω,X)]

= Pr
(
mt = ij

)
Pr (gij = 1| g−ij)

exp [Q (0, g−ij, X)]∑
ω∈G

exp [Q (ω,X)]

= Pg′gπg′

So the distribution (14) satisfies the detailed balance condition. Therefore it is a stationary

distribution for the network formation model. From part 1) of the proposition, we know that

the process is ergodic and it has a unique stationary distribution. Therefore π (g,X) is also

the unique stationary distribution.

Proof of Proposition 4

The proof consists of showing that Q (g,X) can be written in the form θ′t (g,X). Consider

the first part of the potential∑
i

∑
j

gijuij =
∑
i

∑
j

gij

P∑
p=1

θupHup (Xi, Xj)

=
P∑
p=1

θup
∑
i

∑
j

gijHup (Xi, Xj)

≡
P∑
p=1

θuptup (g,X)

= θ′utu (g,X)

where tup (g,X) ≡
∑
i

∑
j

gijHup (Xi, Xj), θu = (θu1, ..., θuP )′ and tu (g,X) = (tu1 (g,X) , ..., tuP (g,X))′.

Analogously define θm = (θm1, θm2, ..., θmL)′ and tm (g,X) = (tm1 (g,X) , tm2 (g,X) , ..., tmL (g,X))′
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and θv = (θv1, θv2, ..., θvS)′ and tv (g,X) = (tv1 (g,X) , tv2 (g,X) , ..., tvS (g,X))′. It follows

that ∑
i

∑
j>i

gijgjimij =
∑
i

∑
j>i

gijgji

L∑
l=1

θmlHml (Xi, Xj)

=
L∑
l=1

θml
∑
i

∑
j>i

gijgjiHml (Xi, Xj)

=
L∑
l=1

θmltml (g,X)

= θ′mtm (g,X)

and ∑
i

∑
j

gij
∑
k 6=i,j

gjkvij =
∑
i

∑
j

gij
∑
k 6=i,j

gjk

S∑
s=1

θvsHvs (Xi, Xk)

=
S∑
s=1

θvs
∑
i

∑
j

gij
∑
k 6=i,j

gjkHvs (Xi, Xk)

=
S∑
s=1

θvstvs (g,X)

= θ′vtv (g,X)

ThereforeQ (g,X) can be written in the form θ′t (g,X), where θ = (θu, θm, θv)
′ and t (g,X) =

[tu (g,X) , tm (g,X) , tv (g,X)]′

Q (g,X) = θ′utu (g,X) + θ′mtm (g,X) + θ′vtv (g,X)

= θ′t (g,X)

and the stationary distribution is

π (g,X) =
exp [θ′t (g,X)]∑

ω∈G
exp [θ′t (ω,X)]

.

B Computational Details

B.1 Network Simulation

The algorithm used to simulate the network produces samples from the stationary equilib-

rium of the model. This is the result of Proposition 3.
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Proof of Proposition 3

Proof.

1. The network simulation algorithm satisfies the detailed balance condition for the sta-

tionary distribution 14. Indeed for any given θ

Pr (g′|g,X, θ)π (g,X, θ) = qg (g′|g) min

{
1,

exp [Q (g′, X, θ)]

exp [Q (g,X, θ)]

qg (g|g′)
qg (g′|g)

}
exp [Q (g,X, θ)]

c (G, X, θ)

= min

{
qg (g′|g)

exp [Q (g,X, θ)]

c (G, X, θ)
,
exp [Q (g′, X, θ)]

c (G, X, θ)
qg (g|g′)

}
= qg (g|g′) min

{
qg (g′|g)

qg (g|g′)
exp [Q (g,X, θ)]

c (G, X, θ)
,
exp [Q (g′, X, θ)]

c (G, X, θ)

}
= qg (g|g′) min

{
qg (g′|g)

qg (g|g′)
exp [Q (g,X, θ)]

exp [Q (g′, X, θ)]
, 1

}
exp [Q (g′, X, θ)]

c (G, X, θ)
= Pr (g|g′, X, θ) π (g′, X, θ)

This concludes the proof.

2. The algorithm generates a Markov Chain of network with finite state space. The chain

is irreducible and aperiodic and therefore it is uniformly ergodic (see Theorem 4.9,

page 52 in Levin et al. (2008)).

3. The bound to the convergence rate was derived by Diaconis and Stroock (1991), for

reversible finite chains (see Proposition 3 in their paper).

The algorithm has a very useful property that can be exploited in the posterior sim-

ulation to reduce the computational burden. Adapting the suggestion in Liang (2010),

define P(R)
θ′ (g′|g) as the transition probability of a Markov chain that generates g′ with R

Metropolis-Hastings updates of the network simulation algorithm, starting at the observed

network g and using the proposed parameter θ′. Then,

P(R)
θ′ (g′|g) = Pθ′(g1|g)Pθ′(g2|g1) · · · Pθ′(g′|gR−1), (37)

where Pθ′(gj|gi) = qg(g
j|gi)αmh(gi, gj) is the transition probability of the network simulation

algorithm above. Since the Metropolis-Hastings algorithm satisfies the detailed balance

condition, we can prove the following

52



LEMMA 1 Simulate a network g′ from the stationary distribution π (·, X, θ′) using a Metropolis-
Hastings algorithm starting at the network g observed in the data. Then

P(R)
θ′ (g|g′)
P(R)
θ′ (g′|g)

=
exp [Q(g,X, θ′)]

exp [Q(g′, X, θ′)]
(38)

for all R, g, g′ ∈ G and for any θ′ ∈ Θ.

Proof. Let P(R)
θ′ (g′|g) be defined as in (37). This is the transition probability of the chain

that generates g′ with R Metropolis-Hastings updates, starting at the observed network g

and using the proposed parameter θ′. Notice that the Metropolis-Hastings algorithm satisfies

the detailed balance for π (g,X, θ′), therefore we have

P(R)
θ′ (g|g′)π (g′, X, θ′) = Pθ′(gR−1|g′)Pθ′(gR−2|gR−1) · · · Pθ′(g|g1)π (g′, X, θ′)

= Pθ′(g1|g)Pθ′(g2|g1) · · · Pθ′(g′|gR−1)π (g,X, θ′)

= P(R)
θ′ (g′|g)π (g,X, θ′)

It follows that

P(R)
θ′ (g|g′)
P(R)
θ′ (g′|g)

=
π (g,X, θ′)

π (g′, X, θ′)

=
exp [Q(g,X, θ′)]

exp [Q(g′, X, θ′)]

c (G, X, θ′)
c (G, X, θ′)

=
exp [Q(g,X, θ′)]

exp [Q(g′, X, θ′)]
.

This concludes the proof.

One should notice that as long as the algorithm is started from the network g observed in

the data (which is assumed to be a draw from the stationary equilibrium of the model), the

equality in (38) is satisfied for any R.

The approximate exchange algorithm presented in this paper removes the requirement

of exact sampling by exploiting the property of the stationary equilibrium characterization,

described in Lemma 1.

B.2 Posterior Simulation

In this section I provide the technical details for the algorithm proposed in the empirical

part of the paper. The first set of results show that the exchange algorithm generate (ap-

proximate) samples from the posterior distribution (16).
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The original exchange algorithm developed in Murray et al. (2006) is slightly different

from the one used here. The main modification is in Step 2: the original algorithm requires

an exact sample from the stationary equilibrium of the model.

ALGORITHM 3 (EXACT EXCHANGE ALGORITHM)
Start at current parameter θt = θ and network data g.

1. Propose a new parameter vector θ′

θ′ ∼ qθ(·|θ) (39)

2. Draw an exact sample network g′ from the likelihood

g′ ∼ π (·|X, θ′) (40)

3. Compute the acceptance ratio

αex (θ, θ′, g′, g) = min

{
1,

exp [Q(g′, X, θ)]

exp [Q(g,X, θ)]

p (θ′)

p (θ)

qθ (θ|θ′)
qθ (θ′|θ)

exp [Q(g,X, θ′)]

exp [Q(g′, X, θ′)]

c(θ)c(θ′)

c(θ)c(θ′)

}
= min

{
1,

exp [Q(g′, X, θ)]

exp [Q(g,X, θ)]

p (θ′)

p (θ)

qθ (θ|θ′)
qθ (θ′|θ)

exp [Q(g,X, θ′)]

exp [Q(g′, X, θ′)]

}
(41)

4. Update the parameter according to

θt+1 =

{
θ′ with prob. αex (θ, θ′, g′, g)
θ with prob. 1− αex (θ, θ′, g′, g)

(42)

The difference between this algorithm and the approximate one is in step 2. The exact

and approximate algorithms use the same acceptance ratio αex (θ, θ′, g′, g), a consequence of

LEMMA 1. Indeed the acceptance ratio for the approximate algorithm is

α̃ex (θ, θ′, g′, g) = min

{
1,

exp [Q(g′, X, θ)]

exp [Q(g,X, θ)]

p (θ′)

p (θ)

qθ (θ|θ′)
qθ (θ′|θ)

P(R)
θ′ (g|g′)
P(R)
θ′ (g′|g)

}
(43)

= min

{
1,

exp [Q(g′, X, θ)]

exp [Q(g,X, θ)]

p (θ′)

p (θ)

qθ (θ|θ′)
qθ (θ′|θ)

exp [Q(g,X, θ′)]

exp [Q(g′, X, θ′)]

}
(44)

= αex (θ, θ′, g′, g) (45)

This result implies that to prove the convergence of the approximate algorithm to the exact

algorithm, there is no need to prove convergence of α̃ex (θ, θ′, g′, g) to αex (θ, θ′, g′, g). The

convergence of step 2 of the algorithm is sufficient.
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B.2.1 Preliminary Lemmas for THEOREM 2

The convergence of the approximate exchange algorithm to the correct posterior distribution

is proven in 4 steps.

1. First we prove that the exact exchange algorithm converges to the correct posterior

(LEMMA 2)

2. Second, we prove that the approximate algorithm has a stationary distribution and it

is ergodic (LEMMA 3, similar to the one in Liang 2010)

3. Third, we prove that the transition kernel of the approximate and exact algorithms

are arbitrarily close for a large enough number of network simulations (LEMMA 4)

4. Fourth, we combine previous results to prove that the approximate algorithm converges

to the correct posterior

A similar proof strategy is contained in Liang et al. (2010) and Andrieu and Roberts (2009).

Let Q (dϑ|θ) = qθ (ϑ|θ) ν (dϑ). The transition kernel of the exact exchange algorithm can be

written as

P (θ, dϑ) =

[∑
g′∈G

π (g′, ϑ)αex (θ, ϑ, g′, g)

]
Q (θ, dϑ)

+ δθ (dϑ)

{
1−

∫
Θ

[∑
g′∈G

π (g′, ϑ)αex (θ, ϑ, g′, g)

]
Q (θ, dϑ)

}

and the transition kernel of the approximate exchange algorithm can be written as

P̃R (θ, dϑ) =

[∑
g′∈G

P(R)
ϑ (g′|g)αex (θ, ϑ, g′, g)

]
Q (θ, dϑ)

+ δθ (dϑ)

{
1−

∫
Θ

[∑
g′∈G

P(R)
ϑ (g′|g)αex (θ, ϑ, g′, g)

]
Q (θ, dϑ)

}

Let η (θ) be the average rejection probability for the approximate algorithm, i.e.

η (θ) := 1−
∫

Θ

[∑
g′∈G

P(R)
ϑ (g′|g)αex (θ, ϑ, g′, g)

]
Q (θ, dϑ) (46)
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The next lemma proves that the transition kernel satisfies the detailed balance condition for

the posterior distribution. For any pair of parameters (θ, ϑ) ∈ Θ we have

P [θ, ϑ|g,X] p (θ|g,X) = Pr [θ|ϑ, g,X] p (ϑ|g,X) (47)

The detailed balance condition is sufficient condition for the Markov chain generated by

the algorithm to have stationary distribution the posterior (16) (for details see Robert and

Casella (2005) or Gelman et al. (2003)).

LEMMA 2 The exchange algorithm produces a Markov chain with invariant distribution
(16).

Proof. Define Z ≡
∫

Θ
π (g|X, θ) p (θ) dθ. In the algorithm the probability Pr [ϑ|θ, g,X]

of transition to θj, given the current parameter θ and the observed data (g,X), can be

computed as

Pr [ϑ|θ, g,X] = qθ (ϑ|θ) exp [Q(g′, X, ϑ)]

c(G, X, ϑ)
αex (θ, ϑ, g′, g) . (48)

This is the probability qθ (ϑ|θ) of proposing ϑ times the probability of generating the new

network g′ from the model’s stationary distribution, exp[Q(g′,X,ϑ)]
c(G,X,ϑ)

and accepting the proposed

parameter αex (θ, ϑ, g′, g). Therefore the left-hand side of (47) can be written as

Pr [ϑ|θ, g,X] p (θ|g,X) = qθ (ϑ|θ) exp [Q(g′, X, ϑ)]

c(G, X, ϑ)
αex (θ, ϑ, g′, g) p (θ|g,X)

= qθ (ϑ|θ) exp [Q(g′, X, ϑ)]

c(G, X, ϑ)
αex (θ, ϑ, g′, g)

exp[Q(g,X,θ)]
c(G,X,θ) p (θ)

Z

= qθ (ϑ|θ) exp [Q(g′, X, ϑ)]

c(G, X, ϑ)

× min

{
1,

exp [Q(g′, X, θ)]

exp [Q(g,X, θ)]

p (ϑ)

p (θ)

qθ (θ|ϑ)

qθ (ϑ|θ)
exp [Q(g,X, ϑ)]

exp [Q(g′, X, ϑ)]

}
×

exp[Q(g,X,θ)]
c(G,X,θ) p (θ)

Z

= min

{
qθ (ϑ|θ) exp [Q(g′, X, ϑ)]

c(G, X, ϑ)

exp [Q(g,X, θ)]

c(G, X, θ)
p (θ)

Z
, qθ (θ|ϑ)

exp [Q(g′, X, θ]

c(G, X, θ)
exp [Q(g,X, ϑ)]

c(G, X, ϑ)

p (ϑ)

Z

}
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= qθ (θ|ϑ)
exp [Q(g′, X, θ)]

c(G, X, θ)
exp [Q(g,X, ϑ)]

c(G, X, ϑ)

p (ϑ)

Z
×

× min

{
1,

exp [Q(g′, X, ϑ)]

exp [Q(g,X, ϑ)]

p (θ)

p (ϑ)

qθ (ϑ|θ)
qθ (θ|ϑ)

exp [Q(g,X, θ)]

exp [Q(g′, X, θ)]

}
= qθ (θ|ϑ)

exp [Q(g′, X, θ)]

c(G, X, θ)
α(ϑ, θ, g′, g)

exp [Q(g,X, ϑ)]

c(G, X, ϑ)

p (ϑ)

Z

= qθ (θ|ϑ)
exp [Q(g′, X, θ)]

c(G, X, θ)
α(ϑ, θ, g′, g)p (ϑ|g,X)

= Pr [θ|ϑ, g,X] p (ϑ|g,X)

The latter step proves the detailed balance for a generic network g′. Since the condition is

satisfied for any network g′, detailed balance follows from summing over all possible networks.

LEMMA 3 (The approximate algorithm is ergodic)
Assume the exact exchange algorithm is ergodic and that for any ϑ ∈ Θ

P(R)
ϑ (g′|g)

π (g′, ϑ)
> 0 for any g′ ∈ G (49)

Then for any R ∈ N such that for any θ ∈ Θ , ρ(θ) > 0, the transition kernel of the

approximate algorithm P̃R is also irreducible and aperiodic, and there exists a stationary
distribution p̃ (θ) such that

lim
s→∞

∥∥∥P̃ (s)
R (θ0, ·)− p̃ (θ)

∥∥∥
TV

= 0 (50)

Proof. The exact algorithm with transition kernel P is an irreducible and aperiodic Markov

chain. To prove that the approximate algorithm with transition kernel P̃R defines an ergodic

Markov chain, it is sufficient to prove that the set of accessible states of P are also included

in those of P̃R. The proof proceeds by induction.

Formally, we need to show that for any s ∈ N, θ ∈ Θ and A ∈ B (Θ) such that P (s) (θ, A) > 0,

implies P̃
(s)
R (θ, A) > 0.

Notice that for any θ ∈ Θ and A ∈ B (Θ),

P̃R (θ, A) =

∫
A

[∑
g′∈G

P(R)
ϑ (g′|g)αex (θ, ϑ, g′, g)

]
qθ (ϑ|θ) dϑ+ I (θ ∈ A) η (θ)

≥
∫
A

[∑
g′∈G

min

{
1,
P(R)
ϑ (g′|g)

π (g′, ϑ)

}
π (g′, ϑ)αex (θ, ϑ, g′, g)

]
qθ (ϑ|θ) dϑ+ I (θ ∈ A) η (θ) > 0
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where the last inequality comes from
P(R)
ϑ (g′|g)
π(g′,ϑ)

> 0 for any g′ ∈ G and ϑ ∈ Θ.

This proves that the statement is true when s = 1. By induction we assume that it is true

up to s = n ≥ 1 and for some θ ∈ Θ chose A ∈ B (Θ) such that P (n+1) (θ, A) > 0 and assume

that ∫
Θ

P̃
(n)
R (θ, dϑ) P̃R (ϑ,A) = 0

This implies that P̃R (ϑ,A) = 0, P̃
(n)
R (θ, ·)-a.s.; by the induction assumption at s = 1 it

follows that P (ϑ,A) = 0, P̃
(n)
R (θ, ·)-a.s.

From this and the induction assumption at s = n, P (ϑ,A) = 0, P (n) (θ, ·)-a.s. (assume not,

then P (ϑ,A) > 0, P (n) (θ, ·)-a.s. which by induction would imply P̃R (ϑ,A) > 0, which is a

contradiction). The latter step contradicts P (n+1) (θ, A) > 0 and the result follows.

The next step consists of proving that the transition kernel of the approximate algorithm

P̃R (θ, ϑ) and the exact algorithm P (θ, ϑ) are arbitrarily close for a large enough number

of network simulations R. Formally we prove a statement which is equivalent to proving

convergence in total variation norm.44

LEMMA 4 (Convergence of the exact and approximate transition kernels)
Let ε ∈ (0, 1]. There exists a number of simulations R0 ∈ N such that for any function
φ : Θ→ [−1, 1] and any R > R0 , ∣∣∣P̃Rφ(θ)− Pφ(θ)

∣∣∣ < 2ε (51)

Proof. The transition of the exchange algorithm is

P (φ(θ), φ(ϑ)) =

∫
Θ

φ(ϑ)

[∑
g′∈G

π (g′, ϑ)αex (θ, ϑ, g′, g)

]
qθ (ϑ|θ) dϑ

+ φ(θ)

[
1−

∫
Θ

[∑
g′∈G

π (g′, ϑ)αex (θ, ϑ, g′, g)

]
qθ (ϑ|θ) dϑ

]

while the transition kernel for the approximate algorithm is

P̃R (φ(θ), φ(ϑ)) =

∫
Θ

φ(ϑ)

[∑
g′∈G

P(R)
ϑ (g′|g)αex (θ, ϑ, g′, g)

]
qθ (ϑ|θ) dϑ

+ φ(θ)

[
1−

∫
Θ

[∑
g′∈G

P(R)
ϑ (g′|g)αex (θ, ϑ, g′, g)

]
qθ (ϑ|θ) dϑ

]
44See Levin et al. (2008), proposition 4.5, page 49.
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and therefore the difference is

S = P (φ(θ), φ(ϑ))− P̃R (φ(θ), φ(ϑ))

=

∫
Θ

φ(ϑ)

[∑
g′∈G

[
π (g′, ϑ)− P(R)

ϑ (g′|g)
]
αex (θ, ϑ, g′, g)

]
qθ (ϑ|θ) dϑ

− φ(θ)

∫
Θ

[∑
g′∈G

[
π (g′, ϑ)− P(R)

ϑ (g′|g)
]
αex (θ, ϑ, g′, g)

]
qθ (ϑ|θ) dϑ

Consider the quantity

S0 =

∫
Θ

[∑
g′∈G

[
π (g′, ϑ)− P(R)

ϑ (g′|g)
]
αex (θ, ϑ, g′, g)

]
qθ (ϑ|θ) dϑ

≤
∫

Θ

[∑
g′∈G

∣∣∣π (g′, ϑ)− P(R)
ϑ (g′|g)

∣∣∣αex (θ, ϑ, g′, g)

]
qθ (ϑ|θ) dϑ

and since αex (θ, ϑ, g′, g) ≤ 1 for any (θ, ϑ) ∈ Θ×Θ and (g′, g) ∈ G × G, we have

S0 ≤
∫

Θ

[∑
g′∈G

∣∣∣π (g′, ϑ)− P(R)
ϑ (g′|g)

∣∣∣] qθ (ϑ|θ) dϑ

=

∫
Θ

[
2 sup
g′∈G

∣∣∣π (g′, ϑ)− P(R)
ϑ (g′|g)

∣∣∣] qθ (ϑ|θ) dϑ

The convergence of the network simulation algorithm implies that for any ε > 0, there exists

an R0 (ϑ, ε) ∈ N such that for any R > R0 (ϑ, ε) and for any g ∈ G

2 sup
g′∈G

∣∣∣π (g′, ϑ)− P(R)
ϑ (g′|g)

∣∣∣ ≤ ε

Pick R0 (ε) = maxϑ∈Θ {R0 (ϑ, ε)}. Then for any ε ∈ (0, 1], there is an R0 (ε) ∈ N such that

for any R > R0 (ε) and for any g ∈ G

S0 ≤
∫

Θ

εqθ (ϑ|θ) dϑ = ε

This implies that

|S| ≤ |2S0| = 2ε

(52)
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The next theorem is the main result for the convergence. It states that the approximate ex-

change algorithm converges to the correct posterior distribution, provided that the number

of network simulations and parameter samples are big enough.

B.2.2 Proof of THEOREM 2

. Proof. The main idea is to decompose the total variation in two components∥∥∥P̃ (s)
R (θ0, ·)− p (·|g,X)

∥∥∥
TV

=
∥∥∥P̃ (s)

R (θ0, ·)− P (s) (θ0, ·) + P (s) (θ0, ·)− p (·|g,X)
∥∥∥
TV

≤
∥∥∥P̃ (s)

R (θ0, ·)− P (s) (θ0, ·)
∥∥∥
TV

+
∥∥P (s) (θ0, ·)− p (·|g,X)

∥∥
TV

and prove that each component converges. We will use the same idea, but rewrite the total

variation in a more convenient form.45 For any function φ : Θ→ [−1, 1] we have∣∣∣P̃ (s)
R φ (θ0)− p (φ)

∣∣∣ =
∣∣∣P̃ (s)

R φ (θ0)− P (s)φ (θ0) + P (s)φ (θ0)− p (φ)
∣∣∣

≤
∣∣∣P̃ (s)

R φ (θ0)− P (s)φ (θ0)
∣∣∣+
∣∣P (s)φ (θ0)− p (φ)

∣∣
The second component converges because the exact exchange algorithm is ergodic, as stated

in Lemma. For any ε > 0 there is number of simulation steps s(θ0, ε), such that for any

s ≥ s(θ0, ε) ∣∣P (s)φ (θ0)− p (φ)
∣∣ ≤ ε (53)

For the remaining of the proof, I will set s0 := s(θ0, ε). I use the telescoping sum decompo-

sition in Andrieu and Roberts (2009) (page 15, adapted from last formula)∣∣∣P̃ (s0)
R φ (θ0)− P (s0)φ (θ0)

∣∣∣ =

∣∣∣∣∣
s0−1∑
l=0

[
P (l)P̃

(s0−l)
R φ (θ0)− P (l+1)P̃

(s0−(l+1))
R φ (θ0)

]∣∣∣∣∣
=

∣∣∣∣∣
s0−1∑
l=0

P (l)
(
P̃R − P

)
P̃

(s0−(l+1))
R φ (θ0)

∣∣∣∣∣
Now we can apply s0 times the result of LEMMA 4 (as in Liang et al. (2010) and Andrieu and

Roberts (2009)) to prove that there exists an R0 (θ0, ε) ∈ N such that for any R > R0 (θ0, ε)∣∣∣P̃ (s0)
R φ (θ0)− P (s0)φ (θ0)

∣∣∣ ≤ 2s0ε (54)

45See Levin et al. (2008), proposition 4.5, page 49.
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this implies ∣∣∣P̃ (s)
R φ (θ0)− p (φ)

∣∣∣ ≤ (2s0 + 1) ε (55)

We conclude the proof by choosing ε = ε/ (2s0 + 1).

This proves that the approximate exchange algorithm is ergodic, therefore the law of

large number holds, and the second part of the theorem is proven.

Figure 10: Convergence to the high density posterior region

Each graph shows convergence to the high density region of the posterior distribution. The curves with
different colors represent chains started at overdispersed initial values. The solid black line represent the
parameter that generated the data. Convergence is very fast and we can use the initial 2000 iterations as
burn-in. In this example the network has n = 50 agents and the number of network simulations per proposal
is R = 3000.

B.3 Convergence Experiments

In this section, I provide an overview of the convergence properties of the algorithm using

examples with artificial data. Assume a toy model with three parameters, with an utility

function of the following form

Ui(g,X) =
n∑
j=1

gijθ1 +
n∑
j=1

gijgjiθ2 +
n∑
j=1

gij

n∑
k 6=i,j;k=1

gjkθ3 +
n∑
j=1

gij

n∑
k 6=i,j;k=1

gkiθ3 (56)

The artificial data are generated using the vector of parameters

θ = (−2.0, 0.5, 0.01) (57)

To obtain the network dataset for the estimation, the network simulation algorithm is started

at a random network and then ran for 1 million iterations. The initial random network is
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generated by assuming each link is independent and the probability of a link is p = .2. The

last iteration of this long simulation is used as dataset in all the estimation exercises below.

I report results for networks with n = 50 and n = 100 agents.

To check if the exchange algorithm converges to the correct region of the parameter

Figure 11: Convergence, autocorrelation functions

Each graph is the autocorrelation function of the chains generated by the exchange algorithm.

space, the parameter simulations are started from 5 over-dispersed starting values

θ1 = (−2.0, 0.5, 0.01)

θ2 = (−10.0, 5.0, 1.0)

θ3 = (10.0,−5.0,−1.0)

θ4 = (−3.0,−0.05, 0.3)

θ5 = (−20.0, 15.0,−0.3)

In Figure 10, I display the convergence of the simulations to the high density region of the

posterior. In this example the number of network simulations for each parameter proposal

is R = 3000.46 The solid horizontal black line represents the parameter that generated the

46Similar results hold for different R values.
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data. Each color represents a simulation started at one of the initial values above. After 2000

iterations all the chains have reached approximate convergence to the region of the posterior

that contains the data generating parameters. In Figure 11, I show the autocorrelation

Figure 12: Convergence of the simulations

Panel A. 500 iterations

Panel B. 1000 iterations

Panel C. 2000 iterations

Three snapshots of the simulations at 500, 1000 and 2000 iterations of the fast exchange algorithm. The
true parameter value is indicated by the intersection of the dashed lines. After 500 iterations only few chains
have converged close to the true parameters. After 1000 the remaining chains have almost reached the high
density region of the posterior. At 2000 iterations the algorithm has reached approximate convergence for
all the chains.

functions for the same example. In this example the autocorrelation disappears after 200

lags. This is mainly due to the small amount of parameters in this toy model. High-

dimensional models show more persistent autocorrelation of the chains. As a consequence,

the length of the simulations for the empirical application is much longer. In Figure 12 I

show the same convergence properties of Figure 10 by plotting two parameters in each graph.

I show 3 snapshots of the simulations: at 500, 1000 and 2000 iterations. The dashed lines
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intersect at the parameter values that generated the data. After 500 iterations (Panel A)

almost all chains have converged to the high density region. The purple chain converges

after 2000 iterations: this is because this chain corresponds to the 5th starting value, which

is the quite far from the parameter that generated the network. Table 4 reports the result

Table 4: Convergence Experiments, n = 50
Starting value: (-2.00,0.50,0.01)

true R=1000 R=2000 R=3000 R=5000
θ1 -2.000 mean -2.0165 -2.0643 -2.077 -2.0838

s.d. 0.2629 0.2018 0.1845 0.1635
mc s.e. 0.0125 0.0069 0.0063 0.0051

θ2 0.500 mean 0.5387 0.6083 0.6207 0.6158
s.d. 0.5519 0.4435 0.4144 0.4076

mc s.e. 0.0338 0.0294 0.0189 0.0279
θ3 0.010 mean 0.0043 0.0121 0.0147 0.0175

s.d. 0.0262 0.0201 0.0187 0.0165
mc s.e. 0.0002 0.0001 0.0001 0.0001

Starting value: (-10.0,5.0,1.0)
true R=1000 R=2000 R=3000 R=5000

θ1 -2.000 mean -2.0131 -2.0651 -2.0688 -2.0673
s.d. 0.2643 0.2013 0.1814 0.1655

mc s.e. 0.0137 0.0067 0.0057 0.0046
θ2 0.500 mean 0.5542 0.6181 0.6149 0.6571

s.d. 0.5506 0.4425 0.4228 0.4046
mc s.e. 0.0363 0.0279 0.029 0.022

θ3 0.010 mean 0.0041 0.0119 0.0143 0.0157
s.d. 0.0267 0.0201 0.0185 0.0167

mc s.e. 0.0002 0.0001 0.0001 0.0001

Starting value: (10.0,-5.0,-1.0)
true R=1000 R=2000 R=3000 R=5000

θ1 -2.000 mean -2.0287 -2.0583 -2.0656 -2.0686
s.d. 0.2548 0.2072 0.1883 0.164

mc s.e. 0.0099 0.0081 0.0085 0.0043
θ2 0.500 mean 0.5723 0.6028 0.6275 0.6593

s.d. 0.5418 0.4473 0.4084 0.3844
mc s.e. 0.034 0.0224 0.0283 0.0207

θ3 0.010 mean 0.0058 0.0113 0.0128 0.016
s.d. 0.0255 0.0211 0.0203 0.0167

mc s.e. 0.0002 0.0001 0.0001 0.0001

Starting value: (-3.0,-0.05,0.3)
true R=1000 R=2000 R=3000 R=5000

θ1 -2.000 mean -2.016 -2.0727 -2.0884 -2.0724
s.d. 0.2574 0.2033 0.1842 0.1625

mc s.e. 0.01 0.0064 0.007 0.0051
θ2 0.500 mean 0.5612 0.5993 0.6354 0.6576

s.d. 0.5436 0.4442 0.4163 0.4044
mc s.e. 0.0346 0.027 0.0252 0.0256

θ3 0.010 mean 0.0047 0.0128 0.0158 0.0162
s.d. 0.0254 0.0205 0.0181 0.0165

mc s.e. 0.0002 0.0001 0.0001 0.0001

Convergence experiments using artificial data. The network contains n = 50 players and the data are
generated by 1 million iterations of the simulation algorithm using the true parameters. The posterior is
estimated using different lengths R of the network simulation algorithm. The table reports the estimated
posterior mean, standard deviation and Monte Carlo standard error for the posterior mean.

64



of estimations using different network simulation lengths, with a network of n = 50 players.

The table suggests that R = 1000 is maybe too small, while there is not much difference

among the remaining estimation results. In Table 5, I show similar results for a network

with n = 100 players and starting the simulations at a parameter vector (-20.0,15.0,-0.3).47

For this network size, R = 3000 would sufficient. This is the amount of simulation used in

the empirical application.

In summary, convergence in this toy model is quite fast. For high-dimensional models

convergence is slower, but reasonable, in the order of 50 or 100 thousands iterations. One

possible strategy is to use a small R for the initial simulations: when the chain reaches

approximate convergence we can increase the number of network simulations and estimate

the posterior with higher precision.

Table 5: Convergence Experiments, n = 100
Starting value: (-20.0,15.0,-0.3)

true R=1000 R=3000 R=5000 R=10000 R=30000 R=50000 R=100000
θ1 -2.000 mean -2.0783 -2.0989 -2.0892 -2.0789 -2.0938 -2.0874 -2.1055

s.d. 0.2613 0.1375 0.1101 0.091 0.0632 0.0703 0.0823
mcse 0.0111 0.0015 0.0031 0.0025 0.0018 0.0016 0.0026

θ2 0.500 mean 0.341 0.5835 0.5627 0.5909 0.6475 0.6396 0.6201
s.d. 0.7119 0.3499 0.343 0.2751 0.2284 0.2612 0.3127

mcse 0.081 0.0176 0.0335 0.028 0.0253 0.0436 0.0364
θ3 0.010 mean 0.006 0.0096 0.0105 0.0111 0.0113 0.0124 0.0119

s.d. 0.0114 0.0065 0.0051 0.0042 0.0032 0.0031 0.0031
mcse 0.000020 0.000005 0.000005 0.000007 0.000003 0.000005 0.000005

Convergence experiments using artificial data. The network contains n = 100 players and the data are
generated by 1 million iterations of the simulation algorithm using the true parameters. The posterior is
estimated using different lengths R of the network simulation algorithm. The table reports the estimated
posterior mean, standard deviation and Monte Carlo standard error for the posterior mean.

B.4 Parallel estimation with multiple networks

When data from multiple independent networks are available the estimation routines are

easily adapted. Assume the researcher has data from C networks: let gc and Xc denote the

network matrix and the individual controls for network c, c = 1, ..., C. The aggregate data

are denoted as g = {g1, ..., gc} and X = {X1, ..., Xc}.
Assuming each network is drawn from the stationary equilibrium of the model, each

47Similar results hold for alternative starting values.
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network has distribution

π (gc, Xc, θ) =
exp [Q (gc, Xc, θ)]∑

ω∈Gc
exp [Q (ωc, Xc, θ)]

(58)

Since each network is independent, the likelihood of the data (g,X) can be written as

π (g,X, θ) =
C∏
c=1

π (gc, Xc, θ) =
C∏
c=1

{
exp [Q (gc, Xc, θ)]

c (Gc, Xc, θ)

}

=
exp

[∑C
c=1Q (gc, Xc, θ)

]
∏C

c=1 c (Gc, Xc, θ)
=

exp
[∑C

c=1Q (gc, Xc, θ)
]

C (G, X, θ)

where G =
⋃C
c=1 Gc and X = {X1, ..., XC}. The likelihood for multiple independent networks

is of the same form as the likelihood for one network observation. The structure of this like-

lihood makes parallelization extremely easy: each network can be simulated independently

using the network simulation algorithm; at the end of the simulation we collect the last

network and compute the potential; then we compute the sum of potentials and use it to

compute the probability of update.

Therefore, the algorithm is modified as follows

ALGORITHM 4 (Parallel FAST EXCHANGE ALGORITHM)
Fix the number of simulations R. Store each network data (gc, Xc) in a different proces-
sor/core. At each iteration t, with current parameter θt = θ and network data g

1. Propose a new parameter θ′ from a distribution qθ(·|θ)
θ′ ∼ qθ(·|θ) (59)

2. For each processor c, start ALGORITHM 1 at the observed network gc, iterating
for R steps using parameter θ′ and collect the last simulated network g′c

g′c ∼ P
(R)
θ′ (g′c|gc) (60)

3. Update the parameter according to

θt+1 =

{
θ′ with prob. αpex (θ, θ′)
θ with prob. 1− αpex (θ, θ′)

where

αpex(θ, θ
′) = min

1,
exp

[∑C
c=1Q(g′c, Xc, θ)

]
exp

[∑C
c=1Q(gc, Xc, θ)

] p (θ′)

p (θ)

qθ (θ|θ′)
qθ (θ′|θ)

exp
[∑C

c=1Q(gc, Xc, θ
′)
]

exp
[∑C

c=1Q(g′c, Xc, θ′)
]
(61)

The speed of the algorithm depends on the largest network in the data. Since each parameter

update requires the result of each processor simulation there is some idle time, since small

networks are simulated much faster.
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B.5 Freeman Segregation Index

The Freeman segregation index measures the degree of segregation in a population with

two groups (Freeman, 1972). Assume there are two groups, A and B. Let nAB be the total

number of links that individuals of group A form to individuals of group B. Let nBA, nBB

and nAA be analogously defined. The original index developed by Freeman (1972) is defined

as

FSI =
E [nAB] + E [nBA]− (nAB + nBA)

E [nAB] + E [nBA]
(62)

When the link formation does not depend on the identity of individuals, then the links

should be randomly distributed with respect to identity. Therefore, the index measures the

difference between the expected and actual number of links among individuals of different

groups, as a fraction of the expected links. An index of 0 means that the actual network

closely resembles one in which links are formed at random. Higher values indicate more

segregation. In this paper segregation is measured using the index48

SEG = max {0, FSI} (63)

The index varies between 0 and 1, where the maximum corresponds to a network in which

there are no cross-group links.

To complete the derivation of the index, the expected number of cross-group links is

computed as

E [nAB] =
(nAA + nAB) (nAB + nBB)

nAA + nAB + nBA + nBB

E [nBA] =
(nBA + nBB) (nAA + nBA)

nAA + nAB + nBA + nBB

C Extensions

It is possible to incorporate unobserved heterogeneity or random coefficients in the model.

However this would significantly increase the computational cost of estimation. The sim-

plest way to introduce unobserved heterogeneity is to model the preference shock εij as

incorporating individual random effects. In our application of school friendship networks

the unobserved quality of the student could be interpreted as ”coolness” or personality or

48The index (62) varies between -1 and 1. However, the interpretation of the index when it assumes
negative values is not clear. Therefore Freeman (1972) suggests to use only when it is nonnegative, to
measure the presence of segregation
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attractiveness. The decision of the player to form a link is modified as follows

Ui (gij = 1, g−ij, X) + ηi + ηj + νij1 ≥ Ui (gij = 0, g−ij, X) + ηi + νij0 (64)

where νij is an i.i.d. shock with logistic distribution and the vector η = {η1, ..., ηn} is drawn

at time 0 from a known distribution W (η). In this formulation I assume that the players

observe the random effect η but the econometrician does not. Notice that the random effect

of player i cancels out, while the choice of linking j is conditional on the random effect of

player j (which is present only when the link is formed).

Conditioning on the realization of the vector η ∈ Υ, the potential function is modified as

follows

Q (g,X, θ; η) = Q (g,X, θ) +
n∑
i=1

n∑
j=1

gijηj (65)

To compute the unconditional likelihood we need to integrate out the unobserved vector η

to obtain

π (g,X, θ) =

∫
Υ

exp [Q (g,X, θ; η)]∑
ω∈G exp [Q (ω,X, θ; η)]

dW (η) (66)

The integral above can be computed using Monte Carlo techniques, as it is standard in the

IO literature or labor economics. However, the model does not allow standard Monte Carlo,

because of the normalizing constant.

A more feasible strategy is to use data augmentation and Markov Chain Monte Carlo

methods as in the discrete choice literature (Rossi et al. (1996), Athey and Imbens (2007)).

Conditioning on the realization of the unobserved component η, we can use the exchange

algorithm to sample from the posterior distribution of θ. Conditioning on the proposed θ we

can use a metropolis hastings step to sample the unobserved component η.

Given an initial (θ, η) at simulation s, we propose a new θ′ and use the exchange algorithm

to accept or reject the proposal. Given the new value of θs+1, we propose a new vector of

unobserved components η′ and accept using a Metropolis Hastings step. The probability of

η, conditioning on (θ, g,X) is

Pr (η|g,X, θ) =
W (η) π (g,X, θ; η)

π (g,X, θ)
(67)

The Metropolis-Hastings step proceeds by proposing a new η′ from a distribution qη (η′|η),

which is accepted with probability

αη (η, η′, g, θs) =

{
1,
W (η′) π (g,X, θ; η′) qη (η|η′)
W (η) π (g,X, θ; η) qη (η′|η)

}
(68)
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Similar ideas apply to random coefficients. One possibility is to estimate a specification

with random coefficient at the network level.

θp = θp0 +
C∑
c=1

θpcZc + ξc (69)

where Zc is a network-level variable for network c, and ξc ∼ N (0, σξ).

The estimation method is flexible enough to allow for estimation when there are missing

links. The Add Health dataset could raise some concern about missing links, since the

original questionnaire asks students to report up to 5 male and 5 female friends. If a student

has more than 5 male friends, those are missing from the dataset.

Using the Bayesian algorithm provided in this paper one could easily deal with the missing

links. The algorithm cab be modified to include an additional simulation step that generates

the missing links gmis, given the observed network data gobs and the current parameter vector.

Then the algorithm proceeds with the exchange algorithm as before using the augmented

data g = {gmis, gobs}.
The main cost of these extensions is the increased computational burden, which may be

substantial.
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