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Abstract. In many applications of network analysis, it is important to distinguish be-
tween observed and unobserved factors affecting network structure. To this end, we develop
spectral estimators for both unobserved blocks and the effect of covariates in stochastic
blockmodels. On the theoretical side, we establish asymptotic normality of our estimators
for the subsequent purpose of performing inference. On the applied side, we show that com-
puting our estimator is much faster than standard variational expectation–maximization
algorithms and scales well for large networks. The results in this paper provide a founda-
tion to estimate the effect of observed covariates as well as unobserved latent community
structure on the probability of link formation in networks.

1. Introduction

1.1. Motivation. The analysis and modeling of network data has important applications in
sociology, economics, public health, computer science, neuroscience, and marketing, among
other areas. Often, both observed and unobserved factors contribute to the global structure
of networks and the processes that generate them. For example, in social networks, factors
including gender, race, and personality affect the likelihood that two people interact. In
such data, race and gender are typically observed, while personality is typically unobserved.
It is therefore crucial to develop ways to disentangle the effect of observed and unobserved
variables on link formation.

The stochastic blockmodel (SBM) is a popular network model and workhorse in the lit-
erature on community detection (Abbe, 2018; Nowicki and Snijders, 2001; Airoldi et al.,
2008). In a K-block SBM, each node belongs to one of K unobserved blocks (communities);
conditional on the block assignments, links form independently as Bernoulli trials with prob-
abilities that depends on the community memberships. Many existing works use SBMs to
estimate or approximate unobserved block structure in networks. In contrast, applications
involving SBMs that incorporate observed nodal attributes as covariates are comparatively
few (Sweet, 2015; Choi et al., 2011; Roy et al., 2019). A possible reason is that estimation for
stochastic blockmodels is computational burdensome, and including covariates in the spec-
ification imposes significant additional challenges to modelling, estimation, and inference.
Exact maximum likelihood estimation is infeasible, therefore most estimation strategies rely
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on approximations based on expectation–maximization algorithms and variational methods
(Airoldi et al., 2008; Daudin et al., 2008; Bickel et al., 2013; Latouche et al., 2012; Vu et al.,
2013). However, these algorithms may converge slowly to the (approximate) solution and
become impractical for networks with thousands of nodes.1

1.2. Overview. The goal of our paper is to develop an inference procedure for SBMs with
observed nodal covariates that is computationally feasible and scales well to large networks.
At a high level, our main strategy consists of formulating this goal as an inference problem in
the context of the generalized random dot product graph (GRDPG) model (Athreya et al.,
2018; Tang and Priebe, 2018; Tang et al., 2017; Rubin-Delanchy et al., 2018). In a GRDPG,
each node is characterized by an unobserved latent position (vector), and each pair of nodes
link with probability determined via a (possibly indefinite) inner product of the pair’s latent
positions; crucially, any SBM can be reformulated as a GRDPG where the latent positions
are fixed within blocks. To address our computational goals, we turn to the use of spectral
methods, which, in addition to enjoying theoretical guarantees (Tang et al., 2017), have been
shown to be successful both in terms of feasibility and scalability in related settings (Zheng
et al., 2015, 2016, 2017).

We provide several contributions to the literature on statistical network analysis. First,
we present a GRDPG model framework that incorporates the effect of observed covariates
on linkage probabilities. Second, we develop a spectral estimator for inference in stochastic
blockmodels with covariates, adapting the spectral estimators developed for our new class of
GRDPG models. Crucially, we obtain a new central limit theorem for the spectral estimator
of the covariates’ effect. Our estimator is asymptotically normal as long as the parameter(s)
for covariate effect can be written as sufficiently well-behaved functions of the SBM block-
specific probabilities. We provide explicit formulas for bias and variance properties of the
estimator, and we show that the estimator is computationally fast, scaling well for large
networks. Our method provides a statistical and algorithmic foundation for inference in a
broad class of models for large network data, including networks that are relatively sparse
in the sense that their average degree scales sub-linearly with network size.

Our exposition focuses on SBMs with a single binary (or discrete) observed covariate,
though we emphasize that the theoretical and computational properties set forth in this work
extend to settings involving multiple discrete covariates. Asymptotic normality continues to
hold as long as the estimator for the effect of the covariate(s) can be expressed as suitably
well-behaved a function of the SBM probabilities. The case involving continuous covariates is
more complicated and an active area of contemporaneous research. Current progress on this
front is being facilitated by recently investigated Latent Structure Models (LSM) (Athreya
et al., forthcoming) and related ideas.

The development of our estimator depends crucially on several observations. First, a K-
block stochastic blockmodel with one binary covariate can be equivalently reformulated as
a (different) 2K-block stochastic blockmodel. Second, as discussed previously, a stochastic
blockmodel can be viewed as a generalized random dot product graph whose latent positions
are fixed within blocks (Athreya et al., 2018; Tang and Priebe, 2018; Tang et al., 2017). The

1Recent advances use further approximations and parallelization to improve computational efficiency (Roy
et al., 2019; Vu et al., 2013). We do not pursue such extensions in this paper.



STOCHASTIC BLOCKMODELS WITH COVARIATES 3

behavior of our spectral estimation method is tied to the asymptotic behavior of spectral
estimators for SBM block probability matrix entries recently studied in Tang et al. (2017).
Our asymptotic analysis provides explicit formulas for standard errors and establishes the
existence of a bias term; however, this bias vanishes at rate proportional to the size of the
network.2

The theoretical machinery used to perform inference extends methods developed for the
analysis of latent positions network models (Athreya et al., 2018; Tang et al., 2017). In
particular, we use Adjacency Spectral Embedding (ASE) for random graphs to embed the
network in a low-dimensional space and to recover the latent positions of the nodes. Our
method is motivated by the (verifiable) intuition that the adjacency matrix can be viewed
as a (mild) perturbation of the probability matrix that generates the network data, and
thus, that the eigenstructure of the adjacency matrix resembles that of the edge probability
matrix (Tang and Priebe, 2018; Athreya et al., 2018). In particular, spectrally decomposing
the adjacency matrix provides accurate information about the structure of sufficiently large
networks (Tang et al., 2017).

In addition to providing statistical guarantees, one of the many advantages of our method
is the speed of computation, obtained without sacrificing estimation accuracy. In our sim-
ulations (see Section 4) we compare our approach to the variational EM (VEM) algorithm
(Daudin et al., 2008; Bickel et al., 2013), as implemented in the blockmodels package in
R. Even for the simplest case of a stochastic blockmodel without covariates, our spectral
method is faster by several orders of magnitude. For example, in a network with n = 5000
nodes and K = 2 blocks, we can estimate the model in few seconds using our spectral
method, while it takes almost 10 minutes to estimate the model using the variational EM
algorithm. When we add a binary covariate, our estimator converges in less than 30 seconds,
while in contrast it takes almost 10 hours when using a parallelized version of the VEM
algorithm in blockmodels. Our methods are implemented in the R package grdpg available
at https://github.com/meleangelo/grdpg.

We also apply our method to the study of Facebook friendship data using the Facebook 100
dataset initially collected and analyzed in Traud et al. (2012). These data contain the
network of friendships and node information about 100 universities in the United States
in the year 2005. We estimate a stochastic blockmodel for the network of Rice University,
consisting of approximately 4000 nodes, using information on gender, dorm, and year of
graduation of the users (see also Roy et al. (2019)). We find evidence of homophily by
gender, as suggested by the positive effect of gender on the probability of linking.

Another way to use our models and methods is to correct for the endogeneity of the
network in empirical models of network effects (Shalizi and McFowland, 2018; Goldsmith-
Pinkham and Imbens, 2013; Boucher and Fortin, 2016; ?; ?). Currently most of these studies
rely on an auxiliary model of network formation to capture unobserved heterogeneity that
affects the outcome. Our model and computational method allow the researcher to perform
this type of correction for large network data.

2Since we have a closed-form expression for the bias term, in principle we can naively correct for it in
estimation, using a plug-in estimate. In our simulations we find that the bias term is usually so small that
the correction is not necessary, at least for networks with a few thousand nodes. On the other hand, the
bias is demonstrably substantial in the empirical application to Facebook data in Section 4.
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2. Background and methodology

2.1. Stochastic blockmodels and generalized random dot product graphs. In a
K-block Stochastic Blockmodel (SBM) nodes are randomly assigned to one of K blocks;
conditional on the blocks, nodes form links independently. A K-block SBM is characterized
by the K ×K matrix of probabilities θ ∈ [0, 1]K×K , where the entry θk` is the probability
of a link occurring between nodes in blocks k and `. The random variables comprising
τ = (τ1, . . . , τn) describe the assignments of each node to a block, and they are i.i.d., such
that the probability that node i belongs to block k is P (τi = k) = πk, with π = (π1, . . . , πK).
Conditional on the assignment to blocks τ , the probability that nodes i and j have a link
is Pij = θτiτj . We use the n × n adjacency matrix A to describe the network, conditioning
on the unobserved blocks. According to the SBM the entries of the adjacency matrix are
generated as

Aij|τi, τj,
ind∼ Bernoulli(Pij), (1)

and we write (A, τ ) ∼ SBM(θ,π) to denote the adjacency matrix drawn from a K-block
SBM with probability matrix θ and block assignment probabilities π.

Conditioning on τ , the likelihood of the SBM with K blocks is

P (A|τ ) =
∏
i≤j

P
Aij

ij (1− Pij)1−Aij =
∏
i≤j

θAij
τiτj

(1− θτiτj)1−Aij . (2)

The Generalized Random Dot Product Graph (GRPDG) model is an alternative model for
network formation with conditionally independent links. In a GRDPG, each node i is charac-
terized by a d-dimensional vector (i.e., an unobserved latent position) Xi = (Xi1, . . . , Xid) ∈
Xd ⊆ Rd. The latent positions are i.i.d. draws from a distribution F with support Xd, that

is X1,X2, . . . ,Xn
iid∼ F . Let X = [X1, . . . ,Xn]T denote the matrix stacking all unobserved

Xi vectors by row.
Let d1 ≥ 1 and d2 ≥ 0 be integers, and define d = d1 + d2. Let Id1,d2 be a d× d diagonal

matrix containing 1’s in d1 diagonal entries and −1 in the remaining d2 diagonal entries. For
a GRDPG with signature (d1, d2), the entries of the adjacency matrix Aij are specified to be
independent, after conditioning on the latent positions Xi and Xj, namely

Aij|Xi,Xj,
ind∼ Bernoulli(Pij) (3)

with link probability given by
Pij = XT

i Id1,d2Xj. (4)

For this setting, we write (X,A) ∼ GRDPGd1,d2(F ).3

2.2. The relationship between SBMs and GRDPGs. A remarkable property of GRDPGs
is that they encompass or approximate any conditionally independent network model. In par-
ticular, any SBM can be represented as a GRDPG with latent positions fixed within blocks.
That is, the K blocks are represented by a fixed location, so that eachXi can only take values
ν = [ν1,ν2, . . . ,νK ]. Two nodes i and j belong to the same block k if Xi = Xj = νk. The

3 It must be noted that the support Xd of F , is a subset of Rd such that xT Id1,d2
y ∈ [0, 1] for all x,y ∈ Xd.
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random variables τ are such that τ1, . . . , τn
iid∼ Multinomial(1;π1, . . . , πK), with π ∈ (0, 1)K

and
∑K

k=1 πk = 1.4 The GRDPG corresponding to model (A, τ ) ∼ SBM(θ,π) can be ob-
tained by an eigendecomposition of the matrix θ = UΣUT and by defining ν1,ν2, . . . ,νK
as the rows of U |Σ|1/2. The distribution F is F =

∑K
k=1 πkδνk , where δ is the Dirac-delta;

importantly, d is the rank of the block-probabilities matrix θ, and d1, d2 are the number of
positive and negative eigenvalues of matrix θ, respectively.

This paper utilizes the spectral methods for inference developed for GRDPGs to estimate
SBMs (Athreya et al., 2018; Tang et al., 2017). The same relationship between SBMs and
GRDPG holds for known link functions and θτiτj = h

(
Bτiτj

)
, where h is a known function

that maps to [0, 1] and B is a K × K matrix of real numbers.5 For example, h could be
the logistic function or the cumulative density function of the Gaussian distribution. Our
stochastic blockmodel would have adjacency matrix A with elements

Aij|τi, τj
ind∼ Bernoulli

(
h(Bτiτj)

)
. (6)

The stochastic blockmodel can be extended to include the effect of observed covariates
(Choi et al., 2011; Sweet, 2015; Roy et al., 2019). Such models allow researchers to disentangle
the effect of observed and unobserved nodal heterogeneity on the probability of linking. In
particular, in social science, such models are used to estimate to what extent the network
exhibits homophily or heterophily. Let node i be characterized by an r-dimensional vector

of observed covariates Zi = (Z
(1)
i , . . . , Z

(r)
i ) ∈ Z ⊆ Rr and let the stochastic blockmodel be

Aij|τi, τj,Zi,Zj
ind∼ Bernoulli

(
h(Bτiτj + f(Zi,Zj;β))

)
, (7)

where f is a known function, β is a vector of parameters, and where we allow Zi to (possibly)
depend on the latent blocks.

In this paper we will focus on the case of a single binary (or discrete) covariate Zi’s, and
we will assume that the function f is an indicator variables that indicates whether i and j’s
covariates have the same value, i.e.,

f(Zi,Zj;β) = β1{Zi=Zj}. (8)

Here β can be interpreted in terms of homophily. Namely, if β > 0, the probability of a link
between i and j is higher when their observables Zi and Zj are the same, and the network
displays homophily in the observable variable. Viceversa, when β < 0, we have heterophily.
The extension to multiple discrete covariates has similar properties and will be discussed
further below.

4Alternatively, we can think of a K-block stochastic blockmodel as a network where the Xi’s are drawn from
a mixture of degenerate distributions with mass centered at ν, i.e.,

Xi ∼ π1δν1 + π2δν2 + · · ·+ πKδνK
. (5)

5If h is unknown we cannot in general expect to be able to accurately estimate the latent positions. See
Tang et al. (2013).
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Our goal is to develop a general spectral method of inference for the parameter β and for
Bτiτj in the following stochastic blockmodel with a discrete nodal covariate:

Aij|τi, τj,Zi,Zj
ind∼ Bernoulli (Pij) , (9)

Pij = h
(
Bτiτj + β1{Zi=Zj}

)
. (10)

We further wish to disentangle the effect of observed and unobserved heterogeneity on link
probabilities. To achieve this, we need to extend results from previous work on GRDPGs
and SBMs (Athreya et al., 2018; Tang and Priebe, 2018; Tang et al., 2017). In the following
subsections we review some of the spectral methods we use in the paper, and we provide an
example that highlights the core of our method.

2.3. Spectral methods and spectral embeddings. Estimation of SBMs for large net-
works, with or without observed covariates, is computationally challenging. The exact MLE
problem is intractable because of the high-dimensional combinatorial problem of considering
all possible partitions of the nodes in blocks (Bickel et al., 2013). Approximate methods
are available, based on variational approximations (Daudin et al., 2008; Airoldi et al., 2008;
Wainwright and Jordan, 2008); however, even these methods are too computationally bur-
densome for large networks.
We make use of spectral methods, which have been shown in the literature to scale well with
network size. Our spectral method embeds the network in a low(er) dimensional space, thus
reducing the dimensionality of the problem, while maintaining the geometric properties of
the model. In particular we use the Adjacency Spectral Embedding (ASE) to estimate the
latent positions of the GRDPG (Athreya et al., 2018). In this sense, our method can be
considered a dimension-reduction tool that decreases the complexity of the data by reducing
the dimensionality of the space. The intuition about the spectral method is that if P is
a low-rank matrix, then we can think of the adjacency matrix A as a perturbation of P ,
that is Aij = Pij +Eij, where Eij is a matrix of independent stochastic perturbations.6 If
A and P are close enough, namely if E is small enough, then the leading eigenvalues and
eigenvectors of A and P will be similar (Tang et al., 2017). As a consequence, the spectral
decomposition of A will provide an estimate of the latent structure of the network, that is,
the latent positions X.

Consider first the case without observed covariates. Let P be positive semidefinite and
let h be the identity function h(u) = u. In this setting, we only have latent positions
X, that are unobserved. If we were able to observe P = XXT , estimation of X would be
straightforward. Furthermore, we could use spectral embeddings for P by exploiting the fact
that P is positive semidefinite of rank d and has spectral decomposition P = UPSPU

T
P ,

where SP is a diagonal matrix containing the largest d eigenvalues (in absolute value) of P
and UP is the matrix with the corresponding eigenvectors. This implies that a good estimate

for X is X̂ = UP |SP |1/2, where | · | denotes entrywise absolute values. The estimation
problem arises because we only observe A, a perturbed version of P . The Adjacency Spectral

Embedding of A into Rd is then X̂ = UA|SA|1/2 where SA is a diagonal matrix containing

6In the Bernoulli case, Eij is a shifted Bernoulli variable, with values Eij = 1 − Pij with probability Pij

and Eij = Pij with probability 1− Pij .
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the largest d eigenvalues of A in absolute value and UA is the matrix with the corresponding
eigenvectors.

In our asymptotic results for the above setup, we use the fact that ASE estimates of latent
positions X asymptotically achieve perfect clustering (moreover, are asymptotically normal)
and can be identified up to multiplication by an orthogonal matrix (Athreya et al., 2018;
Tang et al., 2017). This implies that asymptotically the blocks are recovered exactly (up to
relabeling). The same logic and results hold for non-positive definite matrices P , allowing
us to study more general stochastic blockmodels (Rubin-Delanchy et al., 2018).

2.4. Overview of the method in a 2-block SBM with one binary covariate. To
illustrate the methodology and to develop intuition, we focus on the special case of a K = 2
block stochastic blockmodel with a single discrete covariate and with latent positions on
the unit interval [0, 1], yielding d1 = 1, d2 = 0, and r = 1, where Zi ∈ {0, 1} is a binary
variable (e.g., male/female, white/nonwhite, rich/poor, etc.) and the function f(Zi, Zj; β) =
β1{Zi=Zj} is an indicator for the equality of the covariates for i and j, weighted by parameter
β. The main advantage of this approach is that we can illustrate the geometry of the method
in a low-dimensional space. In our simple example, the matrix B is given by

B =

( block1 block2
block1 p2 pq
block2 pq q2

)
(11)

where p, q ∈ [0, 1]. We can conveniently re-write the matrix B as a dot-product of vector
ν = [p q]T , with p, q ∈ [0, 1], that is B = ννT , so that the SBM can be re-written as a
random dot-product graph model with Xi = p if i is in block 1, Xi = q if i is in block 2.
The probability of linking can then be written as

Pij = h
(
XT

i Xj + β1{Zi=Zj}
)
. (12)

For ease of exposition the network blocks have the same probability, so (π1, π2) = (0.5, 0.5)
and each community contains half males (Zi = 1) and half females (Zi = 0). However, we
note that our algorithm and the theoretical results are valid when we allow the blocks to be
of different size, and the observed covariates to be correlated with the unobserved blocks.

The model specified via (12) corresponds to a 4-block stochastic blockmodel. Indeed, we
have 2 unobserved blocks, that are split in two additional blocks by the observed binary
variable. Therefore, the final result is a 4-block SBM. More generally, if there are K latent
blocks and one binary covariates, we will have a K̃ = 2K-block SBM.

The possible values of XT
i Xj are {p2, pq, q2}. Therefore the 4-block model can be com-

pletely characterized by the 4× 4 matrix

BZ =


male1 female1 male2 female2

male1 p2 + β p2 pq + β pq
female1 p2 p2 + β pq pq + β
male2 pq + β pq q2 + β q2

female2 pq pq + β q2 q2 + β

. (13)

The value h(BZ,11) = h(p2 + β) is the probability that two males in block 1 form a link; on
the other hand, h(BZ,12) = h(p2) is the probability that a male and a female in block 1 form
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a link; h(BZ,31) = h(pq + β) is the probability that two males, one in block 1 and one in
block 2, form a link; and so on.

The above observations imply that, for this four block SBM, there exists a corresponding
GRDPG with link probability matrix

P = Y Id1,d2Y
T , (14)

for some n× d matrix of latent positions Y with d1 ≥ 1, d2 ≥ 0, and d = d1 + d2.
To estimate the parameter β and the latent positions p and q we use the following algo-

rithmic approach.

1. We compute an eigendecomposition of the adjacency matrixA, letting SA denote the
matrix whose diagonal contains the largest d̂ eigenvalues of A in absolute value and
UA denote the matrix whose columns are corresponding unit norm eigenvectors.7 The
Adjacency Spectral Embedding (ASE) of A gives an estimate of the latent positions
of the 4-block model as

Ŷ = UA|SA|1/2, (15)

where | · | indicates the absolute value (entrywise).

2. We use Ŷ to estimate P as

P̂ = Ŷ Id̂1,d̂2Ŷ
T , (16)

where d̂ := d̂1 + d̂2 is the number of largest eigenvalues (in magnitude) of A beyond

a prescribed threshold, and d̂1 and d̂2 are the number of these eigenvalues that are
positive and negative, respectively.

3. We use a clustering procedure to assign each row of Ŷ to one of K̃ = 4 blocks. We
use a Gaussian Mixture Modeling approach (GMM) and estimate the center of the
clusters µ̂ = [µ̂1, µ̂2, µ̂3, µ̂4], that is the means of the Gaussians from the GMM.

4. We compute an estimate for θZ as

θ̂Z = µ̂TId̂1,d̂2µ̂

=


male1 female1 male2 female2

male1 µ̂T1 Id̂1,d̂2µ̂1 µ̂T1 Id̂1,d̂2µ̂2 µ̂T1 Id̂1,d̂2µ̂3 µ̂T1 Id̂1,d̂2µ̂4

female1 µ̂T2 Id̂1,d̂2µ̂1 µ̂T2 Id̂1,d̂2µ̂2 µ̂T2 Id̂1,d̂2µ̂3 µ̂T2 Id̂1,d̂2µ̂4

male2 µ̂T3 Id̂1,d̂2µ̂1 µ̂T3 Id̂1,d̂2µ̂2 µ̂T3 Id̂1,d̂2µ̂3 µ̂T3 Id̂1,d̂2µ̂4

female2 µ̂T4 Id̂1,d̂2µ̂1 µ̂T4 Id̂1,d̂2µ̂2 µ̂T4 Id̂1,d̂2µ̂3 µ̂T4 Id̂1,d̂2µ̂4

. (17)

By comparing the matrix θ̂Z and the population matrix θZ , we can assign each of the

4 blocks to the original 2 blocks. In fact, we know that the diagonal terms of θ̂Z are
estimates of h(p2 + β) if the nodes belong to block 1, or h(q2 + β) if nodes belong to
block 2. This observation shows that we can group the 4 entries of the diagonal, by
checking which values are close. In our case, we will group µ̂T1 Id̂1,d̂2µ̂1 and µ̂T2 Id̂1,d̂2µ̂2

in one block, and µ̂T3 Id̂1,d̂2µ̂3 and µ̂T4 Id̂1,d̂2µ̂4 in another block. Therefore, blocks 1

7In principle, the optimal value for d̂ = rank(BZ); however we do not observe BZ , therefore we estimate d̂
by profile likelihood methods (Zhu and Ghodsi, 2006).
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and 2 in the 4-block model are assigned to the original latent block 1, while blocks 3
and 4 are assigned to original latent block 2.

5. We estimate β from the entries of the matrix B̂Z = h−1(θ̂Z), where the inverse
function h−1 is applied element-wise. For example we know that h−1(µ̂T1 Id̂1,d̂2µ̂1) is

an estimate of p2 +β or q2 +β (because of the invariance of the model to relabeling of
the blocks). Without loss of generality, assume that h−1(µ̂T1 Id̂1,d̂2µ̂1) is an estimate

of p2 + β; therefore, the entry h−1(µ̂T1 Id̂1,d̂2µ̂2) is an estimate of p2. Therefore, the
point estimate of β is then

β̂ = h−1(µ̂T1 Id̂1,d̂2µ̂1)− h−1(µ̂T1 Id̂1,d̂2µ̂2). (18)

6. The latent positions p and q can be estimated from the matrix B̂Z , by using the
submatrix

( female1 female2
male1 h−1(µ̂T1 Id̂1,d̂2µ̂2) h−1(µ̂T1 Id̂1,d̂2µ̂4)

male2 h−1(µ̂T3 Id̂1,d̂2µ̂2) h−1(µ̂T3 Id̂1,d̂2µ̂4)

)
=

(
p̂2 p̂q̂
p̂q̂ q̂2

)
. (19)

The spectral embedding of this matrix provides estimates for the latent positions p̂
and q̂, that are identified up to an orthogonal transformation.

In practice, we can estimate β from multiple entries of the matrix BZ , for example β =
BZ,11−BZ,12 = BZ,33−BZ,34, and weight each estimate by the size of the blocks. This could
improve the estimate, since some blocks are larger than others, so delivering more precise
estimates. Our code implements this idea, which is more practical for empirical applications.

3. Asymptotic theory

In this section, we derive a central limit theorem for the spectral estimator of β. For ease
of exposition, we focus on the case of a single binary observed covariate and scalar β, though
our method works for other specifications in which the effect of the observed covariates β can
be written as a function of the stochastic blockmodel’s probability matrix θZ . Extensions
to multiple binary or discrete observed covariates are straightforward.

We desire to estimate a stochastic blockmodel with observed covariates, where

τi
iid∼ Multinomial(1;π1, . . . , πK), (20)

Zi|τi
ind∼ Bernoulli(bτi), (21)

Aij|τi, τj,Zi,Zj
ind∼ Bernoulli(Pij), (22)

Pij = h
(
Bτiτj + β1{Zi=Zj}

)
. (23)

We assume that the observed covariates are binary and can depend on the block assign-

ment, that is Zi|τi
ind∼ Bernoulli(bτi), where bτi = P (Zi = 1|τi) . Our asymptotic results

are easily extended to the case of discrete observed covariates with three or more possible
outcomes.

As explained above in the simple example, our strategy consists of rewriting the SBM
as a GRDPG. First, notice that the matrix B can be written as Bτiτj = XT

i Xj, where
Xi is a d × 1 vector of latent positions that has K possible values ν1, . . . ,νK . In practice,
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ν = (ν1, . . . ,νK) are the centers of the K blocks X, such that i and j belong to unobserved
block k when Xi = Xj = νk. Let τ be the function that assigns nodes to unobserved blocks;
then τi = k if Xi = νk. We can thus rewrite the stochastic blockmodel above as a random
dot product graph with observed covariates as follows:

Xi
iid∼ π1δν1 + π2δν2 + · · ·+ πKδνK , (24)

Zi|Xi
ind∼ Bernoulli(bτi), (25)

Aij|Xi,Xj,Zi,Zj
ind∼ Bernoulli(Pij), (26)

Pij = h
(
XT

i Xj + β1{Zi=Zj}
)
. (27)

We first notice that both models are stochastic blockmodels with K̃ = 2K blocks, because
the indicator variable 1{Zi=Zj} splits each unobserved block in two blocks. The probabil-

ities of belonging to a block k for this K̃-block SBM are denoted as η = (η1, . . . , ηK̃) =
(π1 · b1, π1 · (1− b1), π2 · b2, π2 · (1− b2), ..., πK · bK , πK · (1− bK)); and the functions that assign
nodes to blocks are ξ = (ξ1, . . . , ξn), such that ξi = 1 if τi = 1 and Zi = 0; ξi = 2 if τi = 1
and Zi = 1; ξi = 3 if τi = 2 and Zi = 0; ξi = 4 if τi = 2 and Zi = 1; and so on.

So we have a stochastic blockmodel (A, ξ,Z) ∼ SBM(θZ ,η) with K̃ × K̃ matrix of
probabilities θZ

θZ =



τ = 1;Z = 0 τ = 1;Z = 1 τ = 2;Z = 0 τ = 2;Z = 1 · · · τ = K;Z = 0 τ = K;Z = 1

τ = 1;Z = 0 h
(
νT
1 ν1 + β

)
h
(
νT
1 ν1

)
h
(
νT
1 ν2 + β

)
h
(
νT
1 ν2

)
· · · h

(
νT
1 νK + β

)
h
(
νT
1 νK

)
τ = 1;Z = 1 h

(
νT
1 ν1

)
h
(
νT
1 ν1 + β

)
h
(
νT
1 ν2

)
h
(
νT
1 ν2 + β

)
· · · h

(
νT
1 νK

)
h
(
νT
1 νK + β

)
τ = 2;Z = 0 h

(
νT
2 ν1 + β

)
h
(
νT
2 ν1

)
h
(
νT
2 ν2 + β

)
h
(
νT
2 ν2

)
· · · h

(
νT
2 νK + β

)
h
(
νT
2 νK

)
τ = 2;Z = 1 h

(
νT
2 ν1

)
h
(
νT
2 ν1 + β

)
h
(
νT
2 ν2

)
h
(
νT
2 ν2 + β

)
· · · h

(
νT
2 νK

)
h
(
νT
2 νK + β

)
...

...
...

. . .

τ = K;Z = 0 h
(
νT
Kν1 + β

)
h
(
νT
Kν1

)
h
(
νT
Kν2 + β

)
h
(
νT
Kν2

)
· · · h

(
νT
KνK + β

)
h
(
νT
KνK

)
τ = K;Z = 1 h

(
νT
Kν1

)
h
(
νT
Kν1 + β

)
h
(
νT
Kν2

)
h
(
νT
Kν2 + β

)
· · · h

(
νT
KνK

)
h
(
νT
KνK + β

)


(28)

The stochastic blockmodel characterized by matrix θZ can be re-formulated as a GRDPG.
Indeed, consider the eigendecomposition of matrix θZ = UΣUT , and define µ = [µ1,µ2, . . . ,µK̃ ]

as the rows of U |Σ|1/2; then let F =
∑K̃

k=1 ηkδµk
, where δ is the Dirac-delta; and d1 and

d2 are the number of positive and negative eigenvalues of θZ , respectively. So the Gener-
alized Random Dot Product Graph model (Y ,A) ∼ GRDPGd1,d2(F ) corresponding to our
stochastic blockmodel (A, ξ,Z) ∼ SBM(θZ ,η) is given by

Yi
iid∼ η1δµ1 + · · ·+ ηK̃δµK̃

(29)

Aij|Yi,Yj
ind∼ Bernoulli(Y T

i Id1,d2Yj) (30)

where d1 + d2 = d̃ = rank(θZ) and Y is the n× d̃ vector of latent positions with centers µ.
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We can now extend asymptotic results for estimation of RDPGs in Athreya et al. (2018);
Tang et al. (2017) to estimate block assignments and the effect of the covariates (see Rubin-
Delanchy et al. (2018) for the corresponding generalization to GRDPGs).

3.1. Main theoretical result. Because the functions τ that describe the assignments to

blocks are unknown, the K̃ SBM model assignment functions ξ are also unknown. Applying

the Adjacency Spectral Embedding procedure, we recover an estimate ξ̂.
We prove asymptotic normality for the parameter β, exploiting the fact that β can be

written as a function of the SBM probabilities, that is

β = h−1 (θZ,11)− h−1 (θZ,12) = h−1
(
νT1 ν1 + β

)
− h−1

(
νT1 ν1

)
. (31)

If the blocks were known at the onset, we could use the estimator β̂ = h−1(θ̂Z,11) −
h−1(θ̂Z,12). However, all that we have access to is the estimate ξ̂, so it is crucial that this
estimate be consistent. For RDPGs this is indeed the case, as one can prove that the latent
blocks are recovered up to an orthogonal transformation matrix in the large n limit (Lemma 4
in Tang et al. (2017)). Therefore we can recover the parameter β up to relabeling of the
blocks. This is summarized in the following theorem.

THEOREM 1. Central limit theorem for β
Let τ be unknown and K known. Let τ̂ : [n] → [K] be the function that assigns nodes to

clusters, estimated using GMM or K-means clustering on the rows of Ŷ = Û |Ŝ|1/2 . Let
function g be defined as the inverse of h, that is g(·) = h−1(·), with first derivative g′(·). Let
g′(νT1 ν1 +β) 6= 0 and g′(νT1 ν2) 6= 0. Then there exists a sequence of permutations φ ≡ φn on

[K] such that the estimator β̂ = h−1(θ̂Z,φ(1)φ(1)) − h−1(θ̂Z,φ(1)φ(2)) is asymptotically normal,
that is

n

(
β̂ − β − ψ̂β

n

)
d→ N(0, σ̂2

β) (32)

as n→∞. The values ψ̂β and σ̂2
β are computed in the proof.

Proof. See Appendix. �

This implies that we can recover the parameter β, and our estimator is asymptotically
unbiased. In Appendix we provide the expression for the bias term.

3.2. Sparsity. The previous theoretical result implicitly assumes a dense network. However,
many social and economic networks of interest in applications display some degree of sparsity.
This is an empirical regularity that social scientists have observed in many settings, as most
people do not form many links. Economists rationalize sparsity with the fact that people
have constraints on time to spend with their friends.

To take this feature of the data into account, while still allowing estimation in massive
networks, we multiply the probability Pij by a scalar ρn that governs the sparsity of the
network, that is, the probability of a link between nodes i and j becomes

Pij = ρnh
(
XT

i Xj + β1{Zi=Zj}
)
. (33)
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Our previous result in Theorem 1 applies to dense networks; that is when ρn → c where
c ∈ (0, 1] is a constant. For simplicity and without loss of generality, in Theorem 1 we have
assumed c = 1.

In this section we consider formally the case of ρn → 0 as n → ∞. We have to limit
the rate of convergence for ρn, because the network could become too sparse, not allowing
estimation. We will describe this regime a semi-sparse, because we will allow ρn → 0 but
nρn = ω(

√
n), that is the average degree of the network grows sub-linearly in n.8 The

intuition for this restriction is that too much sparsity makes links “too rare” and therefore
spectral estimation and inference are impeded by having too few observations.

THEOREM 2. Central limit theorem for sparse networks
Let model (23) include a sparsity coefficient ρn

Pij = ρnh
(
XT

i Xj + β1{Zi=Zj}
)

(34)

such that ρn → 0 and nρn = ω(
√
n) as n→∞. Let τ̂ be assignment of each node to a block,

estimated using ASE and GMM (or K-means) clustering. Then there exists a sequence of

permutations φ ≡ φn on [K] such that the estimator β̂ = h−1(θ̂Z,φ(1)φ(1))− h−1(θ̂Z,φ(1)φ(2)) is
asymptotically normal, that is

nρ1/2n

(
β̂ − β − ψ̈β

nρn

)
d−→ N

(
0, σ̈2

β

)
(35)

where ψ̈β and σ̈2
β are computed in the proof.

Proof. See Appendix. �

Theorem 2 says that as long as the network is not too sparse, the estimator of β will
be asymptotically normal. In practical estimation exercises, we can use a rule-of-thumb
procedure and check whether the number of links of the network is proportional to

√
n, the

square root of the network size.

3.3. Multiple observed covariates. The asymptotic results hold for discrete observed
covariates and more general models, as long as the effect of the observed covariates on
the probability of linking can be written as a function of the block probabilities. Let the

observed variables Zi = [Z
(1)
i ,Z

(2)
i ] include two covariates. For simplicity, we consider the

case of binary variables, and we assume Z
(1)
i

ind∼ Bernoulli(b
(1)
τi ) and Z

(2)
i

ind∼ Bernoulli(b
(2)
τi ).

The results still hold for discrete variables. The model is

Aij|Xi,Xj,Zi,Zj
ind∼ Bernoulli (Pij) , (36)

Pij = h
(
XT

i Xj + β11{Z(1)
i =Z

(1)
j }

+ β21{Z(2)
i =Z

(2)
j }

)
. (37)

This stochastic blockmodel has K̃ = 4K blocks, (A, ξ,Z) ∼ SBM(θZ ,η) with K̃ × K̃
matrix of probabilities θZ given by

8The notation nρn = ω(
√
n) means that for any real constant a > 0 there exists an n0 ≥ 1 such that

ρn > a/
√
n ≥ 0 for every integer n ≥ n0.
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θZ =


W11 W12 ... W1K̃

W21 W22 ... W2K̃
...

...
. . .

...
WK̃1 WK̃2 ... WK̃K̃

 (38)

where each matrix Wk` is given by

τ = `

Z(1) = 0
Z(2) = 0

τ = `

Z(1) = 1
Z(2) = 0

τ = `

Z(1) = 0
Z(2) = 1

τ = `

Z(1) = 1
Z(2) = 1

τ = k

Z(1) = 0
Z(2) = 0

h(νTk ν` + β1 + β2) h(νTk ν` + β2) h(νTk ν` + β1) h(νTk ν`)

τ = k

Z(1) = 1
Z(2) = 0

h(νTk ν` + β2) h(νTk ν`+β1+β2) h(νTk ν`) h(νTk ν` + β1)

τ = k

Z(1) = 0
Z(2) = 1

h(νTk ν` + β1) h(νTk ν`) h(νTk ν`+β1+β2) h(νTk ν` + β2)

τ = k

Z(1) = 1
Z(2) = 1

h(νTk ν`) h(νTk ν` + β1) h(νTk ν` + β2) h(νTk ν`+β1+β2)

(39)

The intuition is the same as the model with one covariate. The blocks can be inferred by
clustering the diagonal elements of matrix θZ , and the parameters β1 and β2 are functions
of the θZ entries, namely

β1 = h−1 (θZ,11)− h−1 (θZ,12) ; β2 = h−1 (θZ,11)− h−1 (θZ,13) . (40)

As such, the main characterization of the central limit theorem holds in this case with
minimal modifications.

4. Simulation and empirical results

4.1. Comparison with Variational EM. We compare our spectral methods to a stan-
dard algorithm used in the literature, the variational EM algorithm, as implemented in the
R package blockmodels. Our methods are implemented in the package grdpg, available
on Github at https://github.com/meleangelo/grdpg. We also note that the variational
EM algorithm uses parallelization to increase computational efficiency, while our method is
implemented without any parallelization, for networks with thousands of nodes.
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4.1.1. Example 1 (No covariates). In our first example, we do not include any covariates
and we assume h is the identity function, so that the probabilities are Pij = XT

i Xj. We
simulate networks with n = 2000, 5000, 10000, and 20000 nodes, with latent space dimension
d = 1. In Table 1 we report the results for K = 2, with block centers [p, q] = [0.1, 0.7], and
matrix of probabilities

θ =

[
0.01 0.07
0.07 0.49

]
. (41)

For simplicity, we assume that blocks are equally likely, that is (π1, π2) = (0.5, .0.5). To
evaluate the performance of the algorithms, we compare clustering accuracy and computa-
tional time. The assignment of nodes to the correct block is summarized by the Adjusted
Rand Index (ARI), and the computational time is given by the CPU time in seconds. Our
point estimates are shown in Table 1, and below we report the estimated block probabilities
for n = 2000.

θ̂V EM =

[
0.01002 0.07012
0.07012 0.49086

]
, θ̂GRDPG =

[
0.00998 0.07001
0.07001 0.49091

]
. (42)

The values p̂, q̂ shown in in Table 1 are obtained by singular value decomposition of the esti-
mated probability matrix (and rotation). We notice that the VEM and GRDPG estimators
produce similar point estimates and very precise clustering of the nodes, as indicated by the
ARI. However, our GRDPG estimator converges much faster than the VEM. For networks
with n = 10000 nodes, our method provides estimates in approximately 30 seconds, while
the VEM takes more than one hour to converge to the final approximation. When n = 20000
and n = 30000, our GRDPG approach converges in about 2 minutes and less than 7 minutes,
respectively, while the VEM is impractical.

Here, a crucial choice is the number of dimensions for the spectral embedding. In our
simulation we know that the rank of the matrix θ is 1, therefore this is the optimal dimension
(see Athreya et al. (2018)). We choose d̂ by profile likelihood methods as in Zhu and Ghodsi
(2006).9 The clustering of the latent positions in blocks is performed using the MCLUST
method implemented in the package Mclust in R (Fraley and Raftery, 1999).

In Table 2 we report results from the same model with K = 5 and latent positions
ν = (0.1, 0.3, 0.5, 0.7, 0.9). The results are comparable to the previous table, our estimator
scales very well with the size of the network, while obtaining the same point estimates of
the VEM algorithm. In this example, the difference in scaling for the two estimators is
more pronounced. In particular, going from K = 2 to K = 5 blocks does not increase the
computational burden too much for the GRDPG-based estimator.

4.1.2. Example 2 (logit link and binary covariate). We consider a model with a binary nodal
covariate, Zi ∼ Bernoulli(0.5) and link probabilities

log

(
Pij

1− Pij

)
= XT

i Xj + β1{Zi=Zj}. (43)

9The screeplot, not shown, displays a huge step down in the (absolute) value of the eigenvalues of the
adjacency matrix at the largest eigenvalue, which suggests that 1 dimension is sufficient to approximate the
structure of the adjacency matrix.
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In this example we use [p, q] = [−1.5, 1] and β = 1.5, thus the matrix θ is

logit(θ) =

[
2.25 −1.5
−1.5 1

]
(44)

while the full matrix θZ that includes the effect of covariates is

logit(θZ) =


3.75 2.25 0.00 −1.50
2.25 3.75 −1.50 0.00
0.00 −1.50 2.50 1.00
−1.50 0.00 1.00 2.50

 . (45)

We choose d̂ by profile likelihood (Zhu and Ghodsi, 2006). In Figure 1 we show the screeplots.
In the upper-left, we display the screeplot for the adjacency matrix, which suggest to use
d̂ = 4. We note that the fourth largest eigenvalue is negative, and the GRDPG model takes
this into account. In the center-left plot, we show the screeplot of the adjacency matrix
net of the effect of the covariates,which we use to estimate the dimension of the unobserved
latent positions X, which suggests a dimension d̂ = 1.

The point estimates for θZ (up to a permutation of the block labels) when the network
has n = 2000 nodes are respectively

logit(θ̂Z,V EM) =


3.7443 2.2410 −0.00367 −1.5069
2.2410 3.7443 −1.5069 −0.0036
−0.00367 −1.5069 2.5013 0.9980
−1.5069 −0.0036 0.9980 2.5013

 , (46)

B̂Z = logit(θ̂Z,GRDPG) =


3.7762 2.2336 −0.0062 −1.5095
2.2336 3.7821 −1.5007 −0.0042
−0.0062 −1.5007 2.4979 0.9985
−1.5095 −0.0042 0.9985 2.5045

 . (47)

According to our procedure, there are several ways to obtain an estimate of β. From
matrix (47), we group rows 1 and 2 in one block, and rows 3 and 4 in another block by

clustering the diagonal entries. We can get an estimate of β as B̂Z,11−B̂Z,12 or B̂Z,22−B̂Z,21

or B̂Z,33−B̂Z,34, etc. We know by our theorem that each of these estimators is asymptotically
normal. Instead of choosing which entries to use to estimate β, we pool all possible estimates,
weighting them by the proportion of observations that are assigned to each block. For

example, the estimate B̂Z,11 − B̂Z,12 is weighted by the proportion of links in the network
that are used to estimate it.

The point estimates for β reported in Table 3 are β̂GRDPG = 1.51201 and β̂V EM = 1.50335.
The estimated latent positions are p̂ = −1.49712 and q̂ = 1.00067 for the VEM; and p̂ =
−1.49454 and q̂ = 0.99926 for the GRDPG estimator. However, it takes almost 2 hours to
obtain the VEM results, while it only takes 7 seconds with our estimator. The left plots
in Figure 1 show the latent positions of the GRDPG (including the effect of covariates)
estimated by ASE. We plot the first coordinate against each of the other three. In the
second and third plot from the top, we can notice that the latent positions nicely cluster into
4 blocks, as our theory predicts. In the bottom-left plot in Figure 1 we display the estimated
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Figure 1. Screeplots (upper left and center left), Estimated latent positions

Ŷ (right, only 2 dimensions out of 4 per plot) and estimated latent positions

X̂, that is p̂ and q̂ in Example 2 (bottom left, up to orthogonal transformation)
for n = 2000.

latent positions net of the covariate effect, showing how the estimated latent positions X̂
cluster around the true values p and q (the black vertical lines).

As explained above, a central advantage of our approach is computational speed. Indeed,
in Table 3 we show that when we increase the size of the network to n = 5000, the estimated
parameters are essentially the same for VEM and GRPDG. However, the GRDPG estimator
take less than 30 seconds to converge; the VEM estimate takes almost 10 hours.

4.1.3. Example 3 (logit link, binary covariate and d = 2). In Table 4 we show estimates for
models with latent positions ν1 = (−1.5,−1.0) and ν2 = (1.0, 0.5). For the simulations in
the first 3 rows we set β = 1.5. It is quite remarkable that the computational time does not
increase much, with respect to the case of d = 1.
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Table 1. Point Estimates and CPU time for example 1 (K = 2)

Estimator n K p p̂ q q̂ CPU Time (s) ARI

GRDPG 2000 2 0.1 0.09993 0.7 0.70065 1.513 1
VEM 2000 2 0.1 0.10008 0.7 0.70061 39.679 1
GRDPG 5000 2 0.1 0.10004 0.7 0.69977 8.548 1
VEM 5000 2 0.1 0.10008 0.7 0.69975 593.203 1
GRDPG 10000 2 0.1 0.09994 0.7 0.69988 32.169 1
VEM 10000 2 0.1 0.09996 0.7 0.69987 4171.218 1
GRDPG 20000 2 0.1 0.09998 0.7 0.70005 128.633 1
VEM 20000 2 NA
GRDPG 30000 2 0.1 0.09998 0.7 0.69995 386.210 1

Table 2. Point Estimates and CPU time for example 1 (K = 5)

latent positions/blocks
Estimator n K 0.1 0.3 0.5 0.7 0.9 CPU Time (s) ARI

GRDPG 2000 5 0.09976 0.30122 0.49819 0.70027 0.89987 1.543 1
VEM 2000 5 0.09994 0.30133 0.49825 0.70018 0.89973 257.713 1
GRDPG 5000 5 0.10015 0.29952 0.49994 0.69962 0.90003 7.982 1
VEM 5000 5 0.10021 0.29958 0.49996 0.69958 0.89999 926.330 1
GRDPG 10000 5 0.09982 0.29975 0.49990 0.70006 0.90006 44.659 1
VEM 10000 5 0.09985 0.29977 0.49990 0.70004 0.90004 8128.253 1
GRDPG 20000 5 0.10000 0.30001 0.50005 0.70019 0.89999 186.073 1
VEM 20000 5 NA

‘

Table 3. Point Estimates and CPU time for example 2 (K = 2)

Estimator n K p p̂ q q̂ β β̂ CPU Time (s) ARI

GRDPG 2000 2 -1.5 -1.49744 1 1.00077 no covariates 4.672 1
VEM 2000 2 -1.5 -1.49712 1 1.00067 no covariates 48.619 1
GRDPG 2000 2 -1.5 -1.49454 1 0.99926 1.5 1.51201 7.557 1
VEM 2000 2 -1.5 -1.49712 1 1.00067 1.5 1.50335 6903.673 1
GRDPG 5000 2 -1.5 -1.50029 1 1.00030 no covariates 17.539 1
VEM 5000 2 -1.5 -1.50019 1 1.00024 no covariates 537.831 1
GRDPG 5000 2 -1.5 -1.49995 1 1.00064 1.5 1.49981 27.312 1
VEM 5000 2 -1.5 -1.50019 1 1.00024 1.5 1.49955 35331.012 1
GRDPG 10000 2 -1.5 -1.49989 1 1.00029 no covariates 55.428 1
GRDPG 10000 2 -1.5 1.49992 1 0.99992 1.5 1.50190 91.067 1
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Table 4. Point estimates, standard errors and time for Example 3.

Estimator n K β β̂ Time (s) ARI

GRDPG 2000 2 1.5 1.51760 7.335 1
GRDPG 5000 2 1.5 1.49946 28.153 1
GRDPG 10000 2 1.5 1.50257 99.128 1
GRDPG 2000 2 0.5 0.64145 7.815 0.998
GRDPG 5000 2 0.5 0.56222 26.763 1
GRDPG 10000 2 0.5 0.51617 88.562 1

The second group of three rows shows the results of simulations with smaller β = 0.5.
This makes the estimation of the covariate effect more challenging. Indeed when n = 2000
the classification in blocks and the point estimate are imprecise, as indicated by the ARI.
When we increase the network size to n = 5000 and n = 10000, the accuracy of the point
estimates improve significantly. This example shows that our approach is extremely useful
in very large networks, where VEM may become computationally impractical.

In summary, our simple examples and simulations show that our GRDPG-based estimator
is quite fast and scales well to large networks. These good computational properties are
obtained without sacrificing the accuracy of the estimates, as we prove that the algorithm
produces the same point estimates as the variational EM in all the examples.

4.2. Application to Facebook 100 dataset. We apply our method to study the network
of Facebook friendships, using the Facebook 100 dataset from Traud et al. (2012).10 We
follow the analysis in Roy et al. (2019), using the Rice University network data. This network
consists of 4087 nodes and 7 nodal covariates: role, gender, major, minor, dorm, year, and
high school. These are all discrete variables. We focus on dorm, gender, and graduation
year, and we exclude the nodes that have a missing value in any of these variables as in Roy
et al. (2019). In addition, we keep only nodes whose graduation year is between 2004 and
2010 and that have at least two links.

We estimate two models with one binary covariate, focusing on gender and dorm. For
the Adjacency Spectral Embedding we estimate the dimension of the latent space d̂ = 12,
using the profile likelihood method in Zhu and Ghodsi (2006). The Gaussian mixture model
clustering is performed using the MCLUST implementation of Fraley and Raftery (1999) in

R. We obtain ̂̃K = 43 blocks. Our procedure nicely adapts to this case of odd number of

clusters. Indeed once we obtain the estimated matrix B̂Z , we cluster its diagonal to recover
the (unobserved) blocks.

When we estimate the model with one binary covariate (gender), we obtain an estimate of

β̂ = 1.78096. This means that in this network there is homophily by gender, that is higher
probability of linking when two students share the same gender.

We also estimate the effect of living in the same dorm on the probability of forming a
Facebook link. We find a β̂ = 1.884547. Not surprisingly, living in the same dorm increase
the probability of becoming friends on Facebook. These results are consistent with both

10The entire dataset is availale at https://archive.org/details/oxford-2005-facebook-matrix.
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Traud et al. (2012) and Roy et al. (2019), that found dorm to be an important determinant
of linking.

5. Conclusion

We have developed a spectral estimator for large stochastic blockmodels with nodal covari-
ates. The main theoretical contribution is an asymptotic normality result for the estimator
of the covariates’ effect on the probability of linking. Our work leverages the relationship
between generalized random dot product graphs and stochastic blockmodels, extending ex-
isting frameworks to include observed covariates and constructing an estimator that is fast
and scalable for large networks. Our theoretical results also apply to relatively sparse graphs,
which is important in a host of applications in social sciences, public health, and computer
science, where network data are usually sparse.

We have shown that our method delivers the same accuracy as the variational EM algo-
rithm, while converging much faster. Our simulations and the empirical application show
that this method works best in very large networks, when the variational EM becomes im-
practical.

We consider the present work a first step in the study of this class of models and the
foundation for inference for SBMs and other latent position models for large networks with
nodal covariates. While we have focused on binary and discrete covariates in this work,
extensions to continuous covariates are currently being pursued via recently developed Latent
Structure Models (Athreya et al., forthcoming). In future work, similar ideas can also be
applied to directed networks and bipartite networks, significantly expanding the realm of
GRDPG applications.
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Appendix A. Proofs

We first provide the general proof strategy for the simple case in which the block assign-
ment function τ is known. The next two theorems provide a foundation and roadmap for
the proof for the more general case.

A.1. Blocks known. The simplest case is when the latent block assignments are known,
the value of d and K are known, and h is the identity function. Let ν = (ν1, . . . ,νK)
be the centers of the K blocks X, such that i and j belong to unobserved block k when
Xi = Xj = νk. Let τ be the function to assigns nodes to unobserved blocks, that is τi = k
if Xi = νk. For this subsection we will assume that τ is known. Our model is

Aij|Xi,Xj,Zi,Zj, β
ind∼ Bernoulli

(
XT

i Xj + β1{Zi=Zj}
)

(A.1)

with Zi
ind∼ Bernoulli(bτi). Therefore, model (A.1) is a K̃ = 2K SBM, because we have K

unobserved blocks, each split in 2 by the observed covariates. The probabilities of belonging

to a block k for this K̃-block SBM are η = (η1, . . . , ηK̃) = (π1 · b1, π1 · (1− b1), π2 · b2, π2 · (1−
b2), . . . , πK · bK , πK · (1 − bK)). Additionally, the assignment functions are ξ = (ξ1, . . . , ξn),
such that ξi = 1 if τi = 1 and Zi = 0; ξi = 2 if τi = 1 and Zi = 1; ξi = 3 if τi = 2 and
Zi = 0; ξi = 4 if τi = 2 and Zi = 1; and so on.

Our SBM is (A, ξ,Z) ∼ SBM(θZ ,η) with K̃ × K̃ matrix of probabilities θZ

θZ =



τ = 1;Z = 0 τ = 1;Z = 1 τ = 2;Z = 0 τ = 2;Z = 1 · · · τ = K;Z = 0 τ = K;Z = 1

τ = 1;Z = 0 νT
1 ν1 + β νT

1 ν1 νT
1 ν2 + β νT

1 ν2 · · · νT
1 νK + β νT

1 νK
τ = 1;Z = 1 νT

1 ν1 νT
1 ν1 + β νT

1 ν2 νT
1 ν2 + β · · · νT

1 νK νT
1 νK + β

τ = 2;Z = 0 νT
2 ν1 + β νT

2 ν1 νT
2 ν2 + β νT

2 ν2 · · · νT
2 νK + β νT

2 νK
τ = 2;Z = 1 νT

2 ν1 νT
2 ν1 + β νT

2 ν2 νT
2 ν2 + β · · · νT

2 νK νT
2 νK + β

...
...

...
. . .

τ = K;Z = 0 νT
Kν1 + β νT

Kν1 νT
Kν2 + β νT

Kν2 · · · νT
KνK + β νT

KνK
τ = K;Z = 1 νT

Kν1 νT
Kν1 + β νT

Kν2 νT
Kν2 + β · · · νT

KνK νT
KνK + β


. (A.2)

The following theorem establishes asymptotic normality for the estimator β̂ = θ̂Z,11−θ̂Z,12.

THEOREM A.1. Let A be an adjacency matrix from model (A.1) with h equal to the

identity function h(u) = u. Let τ be known. Then β̂ = θ̂Z,11 − θ̂Z,12 is asymptotically
normal, that is

n

(
β̂ − β − ψβ

n

)
d−→ N(0, σ2

β) (A.3)
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where both ψβ and σ2
β are derived in the appendix.

Proof. The results in the theorem exploit the fact that β is a linear function of the entries of
θZ , whose spectral estimators also exhibit asymptotic normality (Tang et al., 2017). There
is a small bias term that goes to zero with n, and we can use the result for inference.

To prove the central limit theorem using the machinery of spectral estimation of general-
ized random dot product graphs models, we proceed in several steps.

STEP 1: reformulate SBM as GRDPG
Our SBM can be thought of as a GRDPG. Indeed, consider the eigendecomposition of matrix

θZ = UΣUT , and define µ = [µ1,µ2, . . . ,µK̃ ] as the rows of U |Σ|1/2, then F =
∑K̃

k=1 ηkδµk
,

where δ is the Dirac-delta; and d1 and d2 are the number of positive and negative eigenvalues
of θZ , respectively. So the GRDPG corresponding to our SBM (A, ξ,Z) ∼ SBM(θZ ,η) is
given by

Aij|Yi,Yj
ind∼ Bernoulli(Y T

i Id1,d2Yj) (A.4)

where d1 + d2 = d̃ = rank(θZ) and Y is the n× d̃ vector of latent positions with centers µ.

STEP 2: spectral estimation for GRDPG

Letting d̃ = rank(θZ), we then perform Adjacency Spectral Embedding (ASE) for A and

obtain A = Û ŜÛT + Û⊥Ŝ⊥Û
T
⊥ , where Ŝ is the diagonal matrix containing the d̃ largest

eigenvalues of A in absolute value, and Û is the n × d̃ matrix whose columns are the
corresponding eigenvectors of A. Using a clustering procedure we can cluster the estimated

latent positions Ŷ = Û |Ŝ|1/2 (using K-means or GMM), obtaining K̃ clusters and estimates

of the clusters centers µ̂ and cluster assignments ξ̂. Notice that these estimates are consistent
(Athreya et al., 2018; Tang and Priebe, 2018).

Remember that in the present setting we assume τ is known, so our estimates for the
probabilities are

θ̂Z,k` = µ̂Tk Id1,d2µ̂` (A.5)

for any pair k, ` = 1, . . . , K̃.

STEP 3: estimate β from matrix θ̂Z
From the matrix θZ we notice that β = θZ,11 − θZ,12, thus we can use the estimator β̂ =

θ̂Z,11 − θ̂Z,12. With some algebra we obtain

β̂ = θ̂Z,11 − θ̂Z,12 (A.6)

= θ̂Z,11 − θZ,11 + θZ,11 − θZ,12 + θZ,12 − θ̂Z,12 (A.7)

= (θ̂Z,11 − θZ,11) + (θZ,11 − θZ,12)− (θ̂Z,12 − θZ,12) (A.8)

= (θ̂Z,11 − θZ,11) + β − (θ̂Z,12 − θZ,12) (A.9)

= β + (θ̂Z,11 − θZ,11)− (θ̂Z,12 − θZ,12). (A.10)

Multiplying by n and rearranging terms we finally get

n(β̂ − β) = n(θ̂Z,11 − θZ,11)− n(θ̂Z,12 − θZ,12). (A.11)
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Hence, understanding the asymptotic behavior of n(β̂−β) is equivalent to understanding the

asymptotic behavior of the difference between n(θ̂Z,11 − θZ,11) and n(θ̂Z,12 − θZ,12). It turns
out that analogously to what is available for MLE and variational approximations (Bickel
et al., 2013), we can prove normality of these two terms for the GRDPG (Tang et al., 2017).

The following Lemma A.1 (corresponding to Theorem 2 in Tang et al. (2017)), showing
asymptotic normality of the spectral estimator for the SBM probabilities, will be used in the
proof.

LEMMA A.1. (Theorem 2 in Tang et al. (2017)) Let A ∼ SBM (θ,η) be a K-block sto-
chastic blockmodel graph on n vertices. Let µ1, . . . ,µK be point masses in Rd such that
θk` = µTk Id1,d2µ` and let ∆ =

∑
k ηkµkµ

T
k . For k ∈ [K] and ` ∈ [K], let ψk` be

ψk` =
K∑
r=1

ηr (θkr(1− θkr) + θ`r(1− θ`r))µTk∆−1Id1,d2∆
−1µ` (A.12)

−
K∑
r=1

K∑
s=1

ηrηsθsr(1− θsr)µTs ∆−1Id1,d2∆
−1(µ`µ

T
k + µkµ

T
` )∆−1µs. (A.13)

Let ζk` = µTk∆−1µ` and define σ2
kk for k ∈ [K] to be

σ2
kk = 4θkk(1− θkk)ζ2kk + 4

K∑
r=1

ηrθkr(1− θkr)ζ2kr
(

1

ηk
− 2ζkk

)
(A.14)

+ 2
K∑
r=1

K∑
s=1

ηrηsθrs(1− θrs)ζ2krζ2ks (A.15)

and define σ2
k` for k ∈ [K] and ` ∈ [K], k 6= ` to be

σ2
k` = (θkk(1− θkk) + θ``(1− θ``)) ζ2kl + 2θk`(1− θk`)ζkkζ`` (A.16)

+
K∑
r=1

ηrθkr(1− θkr)ζ2`r
(

1

ηk
− 2ζkk

)
(A.17)

+
K∑
r=1

ηrθ`r(1− θ`r)ζ2kr
(

1

η`
− 2ζ``

)
(A.18)

− 2
K∑
r=1

ηr (θkr(1− θkr) + θ`r(1− θ`r)) ζkrζr`ζk` (A.19)

+
1

2

K∑
r=1

K∑
s=1

ηrηsθrs(1− θrs) (ζkrζ`s + ζ`rζks)
2 . (A.20)



STOCHASTIC BLOCKMODELS WITH COVARIATES 24

Then for any k ∈ [K] and ` ∈ [K],

n

(
θ̂k` − θk` −

ψk`
n

)
d→ N(0, σ2

k`) (A.21)

as n→∞.

Proof. See Tang et al. (2017) for a detailed proof.
�

Using the result in Lemma A.1, we can see that

n(θ̂Z,11 − θZ,11)
d→ N(ψ11, σ

2
11) (A.22)

n(θ̂Z,12 − θZ,12)
d→ N(ψ12, σ

2
12) (A.23)

and by consequence

n(β̂ − β)
d→ N(ψβ, σ

2
β) (A.24)

where

ψβ = ψ11 − ψ12 (A.25)

σ2
β = σ2

11 + σ2
12 − 2σ11,12 (A.26)

and we have used notation σk`,k′`′ to indicated the covariance terms, that is

σk`,k′`′ = COV(θ̂Z,k`, θ̂Z,k′`′) (A.27)

for any k, `, k′, `′ ∈ {1, . . . , K}. The first two terms of the variance are given above in
Lemma A.1. The multivariate version of the CLT can be obtained by applying the Cramer-
Wold device. For the covariance term σ11,12, we provide the calculation below.

Computation of the covariance terms

We compute the covariance for a slightly more general model, that includes a sparsity
coefficient ρn, that is

Pij = ρn
(
XT

i Xj + 1{Zi=Zj}
)
. (A.28)

In the main text we separately discuss the cases in which ρn → c, where c > 0 is a con-
stant, or ρn → 0, but nρn = ω(

√
n) when n → ∞. Let sk be the vector in Rn whose i-th

entry is 1 if ξi = k and 0 otherwise, and let nk be the number of nodes in block k, that is
nk = |{i : ξi = k}|.

We want to compute the correlation between θ̂Z,k` and θ̂Z,k′`′ , for k 6= k′ and ` 6= `′ in
general.

To simplify notation, we will omit the Z from the subscript, so we will refer to θ̂k` instead
of θ̂Z,k` for any k, `. Let S be the d× d diagonal matrix containing the largest d eigenvalues
of P in absolute value, and let U be the n × d matrix whose rows are the corresponding
eigenvectors of P .
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We start from equation (A.5) in the appendix of Tang et al. (2017).

nρ
1/2
n

nkn`

(
θ̂k` − θk`

)
=

nρ
−1/2
n

nkn`

(
sTkEΠUs` + sT` Π⊥UEΠUsk

)
(A.29)

+
nρ
−1/2
n

nkn`

(
sTkΠ⊥UE

2P †s` + sT` Π⊥UE
2P †sk

)
(A.30)

+ Op

(
n−1/2ρ−1n

)
(A.31)

where E = A− P , ΠU = UUT , Π⊥U = I −ΠU and P † = US−1UT .

Term (A.31) goes to zero when nρn = ω(
√
n) as n→∞.

Term (A.30) is the bias term, corresponding to ψk` or ρ
−1/2
n ψ̃k` depending on whether

ρn ≡ 1 or ρn → 0, respectively.

Term (A.29) is the leading order term which converges in distribution to a normal random
variable. In particular, this is the term that must be considered when deriving asymptotic
covariances.

Towards this end, define Υk` below as in equation (A.6) found in Tang et al. (2017),
namely

Υk` :=
nρ
−1/2
n

nkn`

(
sTkEΠUs` + sT` Π⊥UEΠUsk

)
(A.32)

=
nρ
−1/2
n

nkn`
trE

(
ΠUs`s

T
k + ΠUsks

T
` Π⊥U

)
(A.33)

=
nρ
−1/2
n

nkn`
trE

(
ΠUs`s

T
k + ΠUsks

T
` −ΠUsks

T
` ΠU

)
(A.34)

=
nρ
−1/2
n

nkn`
tr (A− P )

(
ΠUs`s

T
k + ΠUsks

T
` −ΠUsks

T
` ΠU

)
(A.35)

=
nρ
−1/2
n

nkn`
tr (A− P )M (A.36)

where M := ΠUs`s
T
k + ΠUsks

T
` −ΠUsks

T
` ΠU .

We therefore have:

Υk` =
nρ
−1/2
n

nkn`

∑
i

∑
j

(Aij − Pij)Mij. (A.37)

First, note that the variable Υk` has expected value equal to zero, i.e., E[Υk`] = 0, since
E[Aij] = Pij for each pair {i, j}. This implies that we can focus on computing covariances
as

COV[Υk`,Υk′`′ ] = E[Υk`Υk′`′ ]. (A.38)
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Towards this end, let the matrix Q be defined as

Q = ΠUs`′s
T
k′ + ΠUsk′s

T
`′ −ΠUsk′s

T
`′ΠU , (A.39)

and so

Υk′`′ =
nρ
−1/2
n

nk′n`′

∑
i

∑
j

(Aij − Pij)Qij (A.40)

The product Υk`Υk′`′ is then given by

Υk`Υk′`′ =

(
nρ
−1/2
n

nkn`

∑
i

∑
j

(Aij − Pij)Mij

)(
nρ
−1/2
n

nk′n`′

∑
i′

∑
j′

(Ai′j′ − Pi′j′)Qi′j′

)
(A.41)

=
n2ρ−1n

nkn`nk′n`′

∑
i

∑
j

∑
i′

∑
j′

(Aij − Pij) (Ai′j′ − Pi′j′)MijQi′j′ (A.42)

First note that when {i, j} 6= {i′, j′}, then the expected value of the corresponding term
in the above summation is zero, since then (Aij − Pij) and (Ai′j′ − Pi′j′) are independent,
centered random variables. Therefore we can focus on the case when {i, j} = {i′, j′}.

Further expanding E[Υk`Υk′`′ ] subsequently yields

E[Υk`Υk′`′ ] =
n2ρ−1n

nkn`nk′n`′

∑
i

∑
j

∑
i′

∑
j′

E [(Aij − Pij) (Ai′j′ − Pi′j′)]MijQi′j′(A.43)

=
n2ρ−1n

nkn`nk′n`′

∑
i

∑
j

E
[
(Aij − Pij)2

]
MijQij (A.44)

=
n2ρ−1n

nkn`nk′n`′

∑
i

∑
j

Pij (1− Pij)MijQij. (A.45)

We thus need to compute the entries of M and Q to obtain a computable formula.

We have for M that Mij := υ
(1)
ij + υ

(2)
ij + υ

(3)
ij , where

υ
(1)
ij :=

(
ΠUs`s

T
k

)
ij

= n`Y
T
i (Y TY )−1µ`1{ξj = k} (A.46)

υ
(2)
ij :=

(
ΠUsks

T
`

)
ij

= nkY
T
i (Y TY )−1µk1{ξj = `} (A.47)

υ
(3)
ij :=

(
ΠUsks

T
` ΠU

)
ij

= nkn`Y
T
i (Y TY )−1µkµ

T
` (Y TY )−1Yj (A.48)

(A.49)

and analogously for Qij := %
(1)
ij + %

(2)
ij + %

(3)
ij . Hence, MijQij =

∑
1≤α,β≤3

υ
(α)
ij %

(β)
ij . In what

follows, it will sometimes be useful to write the scalars υ
(α)
ij , %

(β)
ij equivalently in terms of

their transpose (i.e., see the right-hand sides of their definitions).
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To begin, we make a preliminary observation that

ρ−1
n

nknk′

(∑
i,j

Pij(1− Pij)YiY T
i 1{ξj = k}1{ξj = k′}

)

a.s.→


1
ηk
E
[
θkξ(Y1)(1− θkξ(Y1))Y1Y

T
1

]
if ρn ≡ 1 and k = k′,

1
ηk
E
[
θkξ(Y1)Y1Y

T
1

]
if ρn → 0 and k = k′,

0 if k 6= k′.

Consider the terms involving υ
(1)
ij %

(1)
ij , υ

(1)
ij %

(2)
ij , υ

(2)
ij %

(1)
ij , and υ

(2)
ij %

(2)
ij . Then

n2ρ−1
n

nkn`nk′n`′

∑
i,j

Pij (1− Pij) υ(1)ij %
(1)
ij

= n2ρ−1
n

nkn`nk′n`′

(
n`n`′µ

T
` (Y TY )−1

(∑
i,j

Pij(1− Pij)YiY T
i 1{ξj = k}1{ξj = k′}

)
(Y TY )−1µ`′

)

a.s.→


1
ηk
µT` ∆−1E

[
θkξ(Y1)(1− θkξ(Y1))Y1Y

T
1

]
∆−1µ`′ if ρn ≡ 1 and k = k′,

1
ηk
µT` ∆−1E

[
θkξ(Y1)Y1Y

T
1

]
∆−1µ`′ if ρn → 0 and k = k′,

0 if k 6= k′,

and similarly

n2ρ−1
n

nkn`nk′n`′

∑
i,j

Pij (1− Pij) υ(1)ij %
(2)
ij

a.s.→


1
ηk
µT` ∆−1E

[
θkξ(Y1)(1− θkξ(Y1))Y1Y

T
1

]
∆−1µk′ if ρn ≡ 1 and k = `′,

1
ηk
µT` ∆−1E

[
θkξ(Y1)Y1Y

T
1

]
∆−1µk′ if ρn → 0 and k = `′,

0 if k 6= `′,

and similarly

n2ρ−1
n

nkn`nk′n`′

∑
i,j

Pij (1− Pij) υ(2)ij %
(1)
ij

a.s.→


1
η`
µTk∆−1E

[
θ`ξ(Y1)(1− θ`ξ(Y1))Y1Y

T
1

]
∆−1µ`′ if ρn ≡ 1 and ` = k′,

1
η`
µTk∆−1E

[
θ`ξ(Y1)Y1Y

T
1

]
∆−1µ`′ if ρn → 0 and ` = k′,

0 if ` 6= k′.

and similarly
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n2ρ−1
n

nkn`nk′n`′

∑
i,j

Pij (1− Pij) υ(2)ij %
(2)
ij

a.s.→


1
η`
µTk∆−1E

[
θ`ξ(Y1)(1− θ`ξ(Y1))Y1Y

T
1

]
∆−1µk′ if ρn ≡ 1 and ` = `′,

1
η`
µTk∆−1E

[
θ`ξ(Y1)Y1Y

T
1

]
∆−1µk′ if ρn → 0 and ` = `′,

0 if ` 6= `′.

Next, we consider the terms involving υ
(1)
ij %

(3)
ij , υ

(2)
ij %

(3)
ij , υ

(3)
ij %

(1)
ij , and υ

(3)
ij %

(2)
ij . In particular,

n2ρ−1
n

nkn`nk′n`′

∑
i,j

Pij (1− Pij) υ(1)ij %
(3)
ij

= n2ρ−1
n

nkn`nk′n`′

∑
i,j

Pij (1− Pij)
(
n`nk′n`′1{ξj = k}µT` (Y TY )−1YiY

T
i (Y TY )−1µk′µ

T
`′(Y

TY )−1Yj
)

a.s.→

{
µT` ∆−1E

[
θkξ(Y1)(1− θkξ(Y1))Y1Y

T
1

]
∆−1µk′µ

T
`′∆

−1µk if ρn ≡ 1,

µT` ∆−1E
[
θkξ(Y1)Y1Y

T
1

]
∆−1µk′µ

T
`′∆

−1µk if ρn → 0,

and similarly

n2ρ−1
n

nkn`nk′n`′

∑
i,j

Pij (1− Pij) υ(2)ij %
(3)
ij

a.s.→

{
µTk∆−1E

[
θ`ξ(Y1)(1− θ`ξ(Y1))Y1Y

T
1

]
∆−1µk′µ

T
`′∆

−1µ` if ρn ≡ 1,

µTk∆−1E
[
θ`ξ(Y1)Y1Y

T
1

]
∆−1µk′µ

T
`′∆

−1µ` if ρn → 0.

Along the same lines,

n2ρ−1
n

nkn`nk′n`′

∑
i,j

Pij (1− Pij) υ(3)ij %
(1)
ij

= n2ρ−1
n

nkn`nk′n`′

∑
i,j

Pij (1− Pij)
(
nkn`n`′1{ξj = k′}Y T

j (Y TY )−1µ`µ
T
k (Y TY )−1YiY

T
i (Y TY )−1µ`′

)
a.s.→

{
µTk′∆

−1µ`µ
T
k∆−1E

[
θk′ξ(Y1)(1− θk′ξ(Y1))Y1Y

T
1

]
∆−1µ`′ if ρn ≡ 1,

µTk′∆
−1µ`µ

T
k∆−1E

[
θk′ξ(Y1)Y1Y

T
1

]
∆−1µ`′ if ρn → 0,

and similarly

n2ρ−1
n

nkn`nk′n`′

∑
i,j

Pij (1− Pij) υ(3)ij %
(2)
ij

a.s.→

{
µT`′∆

−1µ`µ
T
k∆−1E

[
θ`′ξ(Y1)(1− θ`′ξ(Y1))Y1Y

T
1

]
∆−1µk′ if ρn ≡ 1,

µT`′∆
−1µ`µ

T
k∆−1E

[
θ`′ξ(Y1)Y1Y

T
1

]
∆−1µk′ if ρn → 0.

Finally, consider the term involving υ
(3)
ij %

(3)
ij . We see that
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n2ρ−1
n

nkn`nk′n`′

∑
i,j

Pij (1− Pij) υ(3)ij %
(3)
ij

= n2ρ−1
n

nkn`nk′n`′

∑
i,j

Pij (1− Pij)
(
nkn`nk′n`′Y

T
j (Y TY )−1µ`µ

T
k (Y TY )−1YiY

T
i (Y TY )−1µk′µ

T
`′(Y

TY )−1Yj
)
.

In order to analyze this quantity, we now decompose the sum over the index j using the
indicator variables 1{ξj = α} for all SBM blocks α ∈ A. For each such term we get

n2ρ−1
n

nkn`nk′n`′

∑
i,j

Pij (1− Pij) υ(3)ij %
(3)
ij 1{ξj = α}

a.s.→

{
ηαµ

T
α∆−1µ`µ

T
k∆−1E

[
θαξ(Y1)(1− θαξ(Y1))Y1Y

T
1

]
∆−1µk′µ

T
`′∆

−1µα if ρn ≡ 1,

ηαµ
T
α∆−1µ`µ

T
k∆−1E

[
θαξ(Y1)Y1Y

T
1

]
∆−1µk′µ

T
`′∆

−1µα if ρn → 0.

Hence, by aggregating over all α ∈ A, we obtain

n2ρ−1
n

nkn`nk′n`′

∑
i,j

Pij (1− Pij) υ(3)ij %
(3)
ij

a.s.→

{∑
α ηαµ

T
α∆−1µ`µ

T
k∆−1E

[
θαξ(Y1)(1− θαξ(Y1))Y1Y

T
1

]
∆−1µk′µ

T
`′∆

−1µα if ρn ≡ 1,∑
α ηαµ

T
α∆−1µ`µ

T
k∆−1E

[
θαξ(Y1)Y1Y

T
1

]
∆−1µk′µ

T
`′∆

−1µα if ρn → 0.

Combining all of the above observations yields COV[Υk`Υk′`′ ] for all possible relationships
between tuples {k, `}, {k′, `′} and for both regimes ρn ≡ 1, ρn → 0.

�

A.2. Blocks known and general link function. If the link function is not the identity,
then our general model becomes

Aij|Xi,Xj,Zi,Zj, β
ind∼ Bernoulli

(
h(XT

i Xj + β1{Zi=Zj})
)
. (A.50)

A popular choice of h is the logistic specification, with h(u) = eu/(1 + eu) (Choi et al.,
2011; Traud et al., 2012; Sweet, 2015; Nimczik, 2018). The generalization of the central limit
theorem is as follows.

THEOREM A.2. (General nonlinear h function) Let A be an adjacency matrix from model
(A.50) and let h be a link function, h : X × X × Z × Z → [0, 1]. Let τ be known and let
function g be defined as the inverse of h, that is g(·) = h−1(·), with first derivative g′(·). Let

g′(νT1 ν1 + β) 6= 0 and g′(νT1 ν2) 6= 0. Then β̂ = h−1(θ̂Z,11) − h−1(θ̂Z,12) is asymptotically
normal, in particular

n

(
β̂ − β − ψ̃β

n

)
d−→ N

(
0, σ̃2

β

)
(A.51)

where ψ̃β and σ̃2
β are computed in appendix.
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Proof. In this case model (23) is as follows:

Aij|Xi,Xj,Zi,Zj, β
ind∼ Bernoulli

(
h
(
XT

i Xj + β1{Zi=Zj}
))
. (A.52)

All the rest is the same, and we can write our SBM as (A, ξ,Z) ∼ SBM(θZ ,η) with

K̃ × K̃ matrix of probabilities θZ given by

θZ =



τ = 1;Z = 0 τ = 1;Z = 1 τ = 2;Z = 0 τ = 2;Z = 1 · · · τ = K;Z = 0 τ = K;Z = 1

τ = 1;Z = 0 h(νT
1 ν1 + β) h(νT

1 ν1) h(νT
1 ν2 + β) h(νT

1 ν2) · · · h(νT
1 νK + β) h(νT

1 νK)

τ = 1;Z = 1 h(νT
1 ν1) h(νT

1 ν1 + β) h(νT
1 ν2) h(νT

1 ν2 + β) · · · h(νT
1 νK) h(νT

1 νK + β)

τ = 2;Z = 0 h(νT
2 ν1 + β) h(νT

2 ν1) h(νT
2 ν2 + β) h(νT

2 ν2) · · · h(νT
2 νK + β) h(νT

2 νK)

τ = 2;Z = 1 h(νT
2 ν1) h(νT

2 ν1 + β) h(νT
2 ν2) h(νT

2 ν2 + β) · · · h(νT
2 νK) h(νT

2 νK + β)

...
...

...
. . .

τ = K;Z = 0 h(νT
Kν1 + β) h(νT

Kν1) h(νT
Kν2 + β) h(νT

Kν2) · · · h(νT
KνK + β) h(νT

KνK)

τ = K;Z = 1 h(νT
Kν1) h(νT

Kν1 + β) h(νT
Kν2) h(νT

Kν2 + β) · · · h(νT
KνK) h(νT

KνK + β)


.

(A.53)

So we know that β = h−1(θZ,11)− h−1(θZ,12), and we can use the estimator

β̂ = h−1(θ̂Z,11)− h−1(θ̂Z,12). (A.54)

By Theorem A.1 we know that

n(θ̂Z,11 − θZ,11)
d→ N(ψ11, σ

2
11) (A.55)

n(θ̂Z,12 − θZ,12)
d→ N(ψ12, σ

2
12) (A.56)

Applying a Taylor expansion reveals

h−1(θ̂Z,11) = h−1(θZ,11) +
(
h−1(θZ,11)

)′ (
θ̂Z,11 − θZ,11

)
+ smaller order terms(A.57)

h−1(θ̂Z,12) = h−1(θZ,12) +
(
h−1(θZ,12)

)′ (
θ̂Z,12 − θZ,12

)
+ smaller order terms(A.58)

and this implies

n
(
h−1(θ̂Z,11)− h−1(θZ,11)

)
d→ N(ψ̃11, σ̃

2
11), (A.59)

n
(
h−1(θ̂Z,12)− h−1(θZ,12)

)
d→ N(ψ̃12, σ̃

2
12), (A.60)

where ψ̃k` = ψk` (h−1(θZ,k`))
′

and σ̃2
k` = σ2

k`

[
(h−1(θZ,k`))

′]2
for k, ` = 1, 2.

Finally this implies that our estimator behaves in the manner

n(β̂ − β)
d→ N(ψ̃β, σ̃

2
β), (A.61)

where the bias term is

ψ̃β = ψ̃11 − ψ̃12, (A.62)

where the variance term σ̃2
β satisfies

σ̃2
β = σ̃2

11 + σ̃2
12 − 2σ̃11,12, (A.63)

and where the covariance term is given by

σ̃11,12 = cov(h−1(θ̂11), h
−1(θ̂12)) = σ11,12

[(
h−1(θZ,11)

)′] [(
h−1(θZ,12)

)′]
. (A.64)
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�

A.3. Proof of THEOREM 1. Let K be known. When τ is not known, we can estimate

it using Adjacency Spectral Embedding (ASE) to get an estimate Ŷ = Û |Ŝ|1/2; we then

cluster the rows of Ŷ using a Gaussian Mixture Model (GMM) or K-means clustering. This

gives estimates ξ̂ and therefore τ̂ as we can easily estimate the probability bk of the Bernoulli
covariates from the observed Zi’s, within each estimated block.

Because of the estimation the blocks are recovered up to a permutation of the blocks’
labels (as it is in any mixture model). Nonetheless, we can still obtain an asymptotic result

for β̂ using the following Lemma A.2, taken from Tang et al. (2017).

LEMMA A.2. (Corollary 2 in Tang et al. (2017)) Let the setting and notation be as in

Theorem A.1. Let K be known and let ξ̂ : [n] → [K̃] be the function that assigns nodes to

clusters, estimated using GMM or K-means clustering on the rows of Ŷ = Û |Ŝ|1/2 (as in

the proof of Theorem A.1). Let θ̂Z,k` = µ̂Tk Id1,d2µ̂` and let ∆̂ =
∑K

k=1 η̂kµ̂kµ̂
T
` . For k ∈ [K]

and ` ∈ [K] define ψ̂k` as

ψ̂k` =
K∑
r=1

ξ̂r

(
θ̂kr(1− θ̂kr) + θ̂`r(1− θ̂`r)

)
µ̂Tk ∆̂−1Id1,d2∆̂

−1µ̂` (A.65)

−
K∑
r=1

K∑
s=1

η̂rη̂sθ̂sr(1− θ̂sr)µ̂Ts ∆̂−1Id1,d2∆̂
−1(µ̂`µ̂

T
k + µ̂kµ̂

T
` )∆̂−1µ̂s (A.66)

Then there exists a sequence of permutations φ ≡ φn on [K] such that for any k ∈ [K] and
` ∈ [K],

n

(
θ̂φ(k),φ(`) − θk` −

ψ̂k`
n

)
d→ N(0, σ2

k`) (A.67)

as n→∞.

Proof. See Tang et al. (2017) for the detailed proof. �

Let us first focus on the linear case, in which h is the identity function. If h(u) = u, then
we can estimate β as

β̂ = θ̂φ(1),φ(1) − θ̂φ(1),φ(2) (A.68)

= θ̂φ(1),φ(1) − θ11 + θ11 − θ12 + θ12 − θ̂φ(1),φ(2) (A.69)

=
(
θ̂φ(1),φ(1) − θ11

)
+ β −

(
θ̂φ(1),φ(2) − θ12

)
(A.70)

and rearranging we obtain

n
(
β̂ − β

)
= n

(
θ̂φ(1),φ(1) − θ11

)
− n

(
θ̂φ(1),φ(2) − θ12

)
(A.71)

which by Lemma A.2 implies that there exists a (sequence of) permutation(s) φ such that
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n

(
β̂ − β − ψ̂β

n

)
d→ N(0, σ2

β) (A.72)

where ψ̂β = (ψ̂11 − ψ̂12) and σ2
β = σ2

11 + σ2
12 − 2cov

(
θ̂φ(1),φ(1), θ̂φ(1),φ(2)

)
.

For the nonlinear link function, we use a Taylor expansion

h−1(θ̂φ(k),φ(`)) = h−1(θk`) + [h−1(θk`)]
′
(
θ̂φ(k),φ(`) − θk`

)
+ smaller order terms(A.73)

and thus we have

h−1(θ̂φ(k),φ(`))− h−1(θk`) = [h−1(θk`)]
′
(
θ̂φ(k),φ(`) − θk`

)
+ smaller order terms(A.74)

which implies that

n
(
h−1(θ̂φ(k),φ(`))− h−1(θk`)

)
d→ N

(
˜̃ψk`, ˜̃σ

2
k`

)
, (A.75)

where ˜̃ψk` = [h−1(θk`)]
′ψ̂k` and ˜̃σ2

k` = ([h−1(θk`)]
′)2σ2

k`.
We therefore obtain the result

n(β̂ − β)
d→ N(ψ̂β, σ̂

2
β) (A.76)

where ψ̂β = ˜̃ψ11 − ˜̃ψ12 and σ̂2
β = ˜̃σ2

11 + ˜̃σ2
12 − 2˜̃σ11,12 and

˜̃σ11,12 := cov
(
h−1(θ̂φ(1),φ(1)), h

−1(θ̂φ(1),φ(2))
)

= σ11,12

[(
h−1(θ̂φ(1)φ(1))

)′] [(
h−1(θ̂φ(1),φ(2))

)′]
.(A.77)

A.4. Proof of THEOREM 2. In the semi-sparse regime the proof follows the same steps
as the proof of Theorem 1. The only difference is in the bias terms, variances, and covariance
terms, that are computed according to the following lemma.

LEMMA A.3. (Corollary 2 extension for semi-sparse case in Tang et al. (2017)).

Let A ∼ SBM(ξ,θ, ρn) be a K̃-block stochastic blockmodel adjacency matrix on n vertices
with sparsity factor ρn. Let µ1, . . . , µK̃ be the center of the blocks in Rd and let θk` =
µTk Id1,d2µ` be the probability of a link between nodes in blocks k and `. Let K be known and let

ξ̂ : [n]→ [K̃] be the function that assigns nodes to clusters, estimated using GMM or K-means

clustering on the rows of Ŷ = Û |Ŝ|1/2 (as in the proof of Theorem A.1). Let θ̂k` = µ̂Tk Id1,d2µ̂`
and let ∆̂ =

∑K
k=1 η̂kµ̂kµ̂

T
` . Define ∆ =

∑K
k=1 ηkµkµ

T
k and let ζk` = µTk∆−1µ`. Define σ̃2

kk

for k ∈ [K] to be

σ̃2
kk = 4θkkζ

2
kk + 4

K∑
r=1

ηrθkrζ
2
kr

(
1

ηk
− 2ζkk

)2

+ 2
K∑
r=1

K∑
s=1

ηrηsθrsζ
2
krζ

2
ks (A.78)
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and define σ̃2
k` for k ∈ [K̃] and ` ∈ [K̃], k 6= ` to be

σ̃2
k` = (θkk + θ``) ζ

2
kk + 2θk`ζkkζ`` +

K∑
r=1

ηrθkrζ
2
`r

(
1

ηk
− 2ζkk

)
(A.79)

+
K∑
r=1

ηrθ`rζ
2
kr

(
1

η`
− 2ζ`

)
− 2

K∑
r=1

ηr (θkr + θ`r) ζkrζr`ζk` (A.80)

+
1

2

K∑
r=1

K∑
s=1

ηrηsθrs (ζkrζ`s + ζ`rζks)
2 . (A.81)

Let ψ̈k` be defined as

ψ̈k` =
K∑
r=1

η̂r

(
θ̂kr + θ̂`r

)
µ̂Tk ∆̂−1µ̂` (A.82)

−
K∑
r=1

K∑
s=1

µ̂kµ̂sθ̂srµ̂
T
s ∆̂−1Id1,d2∆̂

−1 (µ̂`µ̂Tk + µ̂lµ̂
T
`

)
∆̂−1µ̂s. (A.83)

Then there exists a (sequence of) permutation(s) φ ≡ φn on [K] such that for any k ∈ [K]
and ` ∈ [K],

nρ1/2n

(
θ̂φ(k),φ(`) − θk` −

ψ̈k`
nρn

)
d→ N(0, σ̃k`) (A.84)

as n→∞, ρn → 0, and nρn = ω(
√
n).
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