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Abstract

This paper studies racial segregation in schools using data on student friendships from Add
Health. I estimate a structural equilibrium model of friendship formation among students, with
preferences that allow for both homophily (a bias for similar people) and heterophily (a bias
for different people) on different characteristics. Preferences also depend on link externalities,
such as having common friends or reciprocated links. I find that students tend to interact with
similar people. Homophily goes beyond direct links: students also prefer a racially homoge-
neous set of indirect friends. However, I find heterophily in parental income levels and for the
group of hispanic students. I simulate several re-allocation programs, showing that policies that
transport minorities to other schools have nonlinear effects on within-school segregation and
other network features such as clustering and centrality. In some instances, these interventions
increase segregation within schools. Policies that increase racial diversity by re-allocation of
student according to their parental income have less impact on racial segregation with schools.
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1 Introduction
Social networks are important determinants of individuals’ socioeconomic performance. An in-
creasing amount of evidence shows that the number and composition of social ties affects employ-
ment prospects, school performance, risky behavior, adoption of new technologies, diffusion of
information and health outcomes (Topa, 2001; Laschever, 2009; Cooley, 2010; De Giorgi et al.,
2010; Nakajima, 2007; Bandiera and Rasul, 2006; Conley and Udry, 2010; Golub and Jackson,
2011; Acemoglu et al., 2011; Calvo-Armengol et al., 2009). An empirical challenge in estimat-
ing such network effects is the endogeneity of social relationship: individuals choose their peers
and friends according to their socioeconomic characteristics and their relationships. As a conse-
quence, in socially generated networks the agents are likely to interact with similar individuals
(homophily), segregating along socioeconomic attributes (Currarini et al., 2009; Boucher, 2015;
De Marti and Zenou, 2009).

Empirical estimates of peer effects suggest that segregation may have an effect on school out-
comes of minorities (Echenique and Fryer, 2007; Cutler and Glaeser, 1997; Ananat, 2011; Angrist
and Lang, 2004; Echenique et al., 2006). Desegregation programs are an attempt to re-engineer
this process, by re-allocation of minority students to predominantly white/caucasian schools. The
underlying premise about desegregation programs is that by exposing students of different racial
backgrounds to each other, they will necessarily interact more. In practice, these programs face
a Lucas critique: if desegregation plans are designed without taking into account the equilibrium
choice of peers and the effects on outcomes, they may backfire (Carrell et al., 2013; Badev, 2013).
In an experimental study that re-assigned students to peer groups to maximize educational out-
comes based on peer effects estimates, Carrell et al. (2013) show that after being assigned to an-
other group, students modify the way they interact within the newly assigned group, decreasing the
expected effect of the intervention. Recent structural models suggest that ignoring the equilibrium
network formation leads to underestimating peer effects (Badev, 2013; Hsieh and Lee, 2012).

This paper contributes to this debate by estimating an equilibrium model of network forma-
tion in schools and measuring the extent to which re-allocations of students among schools lead
to changes in segregation patterns and interactions, even in the absence of peer effects. While
from a policy perspective it is not clear whether we should focus on segregation across schools
or within schools to improve outcomes, my simulations show that there is a relationship between
the demographic composition of the school and the way students interact in groups.1 These sim-
ulations can thus be interpreted as measuring a first-order effect of such re-allocation policies. In
the model, students are heterogeneous on several (observed) dimensions and decide whether to
form links to other students based on their preferences. The preferences are flexible and allow for
both homophily (a bias for similar people) and heterophily (a bias for different people) on differ-
ent characteristics (Mele, 2017a; Boucher, 2015; DePaula et al., forthcoming). For example, there
may be homophily by race and heterophily by age. Preferences also depend on link externalities,
such as having common friends or reciprocated links.

The link formation is sequential and we focus on stationary equilibria. The reason is that data
usually come from a single snapshot of the network, therefore the dynamics of the model is harder
to identify and estimate. The stationary equilibrium is characterized by the probability of observ-

1Most of the literature focuses on the effects of segregation across schools (Clotfelter, 2004; Lutz, 2011; Angrist
and Lang, 2004), there are recent works that analyze the effect of segregation within schools (Echenique and Fryer,
2007; Echenique et al., 2006; Badev, 2013; Mele, 2017b) on outcomes.
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ing a particular network in the long run. This distribution has peaks at the networks that are Nash
equilibria. Assuming that the network we observe in the data is drawn from the stationary equilib-
rium of the model, this distribution can be interpreted as the likelihood of observing a network in
the long run.

Compared to a standard logit model of link prediction, the model used in this paper incorpo-
rates externalities and equilibrium effects that change the incentives of a player to form or delete
links. Indeed if the equilibrium effects are absent the only relevant determinants of a link are the
demographics of the players. An individual will form a link to another student if the direct utility
derived from the demographic characteristics is sufficiently high (net of idiosynchratic shocks).
However, this mechanism does not take into account that when a student forms a new link, she is
also creating an additional indirect link for someone else. While this indirect connection may not
bear the full extent of benefits of a direct link, it may increase or decrease the payoffs. This equi-
librium mechanism generates additional incentives (positive or negative) to form links, and may
as well depend on demographics and compositions of indirect ties. We focus on the equilibrium
of such a process of link formation, that is networks that are stable in a well defined sense (game
theoretical equilibrium).

Using this theoretical framework, I estimate preferences for link formation in school friendship
networks, using data from the National Longitudinal Study of Adolescent Health (Add Health).
This unique dataset contains detailed information on friendship networks of students enrolled in
a representative sample of US schools. The final sample includes 16 high schools from the sat-
urated sample with a total of 3604 students and more than 3.5 million pairs.2 I find that race,
gender, parental income, attractiveness and grade are important determinants of network forma-
tion in schools. There is overwhelming evidence of homophily: students tend to interact and form
social ties with similar people, controlling for the structure of their network. Furthermore, I find
that homophily effects extend well beyond direct links: for example, students also prefer an ho-
mogeneous racial composition of friends of friends. I also find evidence of heterophily in parental
income levels, suggesting that students tend to mix by socioeconomic status. Interestingly, hispan-
ics prefer a diverse group of friends, as well as a diverse group of indirect friends. Therefore, the
creation of a new link with a student of the same race, will change the incentive of other students to
form links within the same racial group. If these incentives are positive (homophily) this effect will
lead to increased segregation levels and clustering of the network; viceversa, if there is heterophily,
this leads to a decrease in segregation and clustering.

I use the estimated model to predict how a change in the composition of the student popula-
tion affects the structure of the network.3 Because the structure of the network is correlated with
individual and aggregate outcomes, this effect is of first-order importance (Carrell et al., 2013;
Echenique and Fryer, 2007; Badev, 2013; Calvo-Armengol et al., 2009). First, I simulate a deseg-
regation program by swapping students in two homogeneous schools that are (almost) completely
white and black, respectively. Interestingly, the results depend on which measure of network seg-

2I use only the schools from the saturated sample. The sampling scheme of Add Health involved in-school in-
terviews for all 90,118 students. A subsample of 20745 students was also interviewed at home, to collect detailed
individual information. The saturated sample contains schools for which both interviews were administered to each
student enrolled. Therefore this sample does not contain any missing information about individual controls. This is
not the case for most schools in Add Health.

3Alternatively, the model could be used as a guide for the design of randomized experiments that modify students
assignments.
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regation we use. The most intuitive measure of segregation, the Freeman Segregation Index (FSI),
measures the difference between the fraction of mixed-group friendships and their expected value
under no homophily. The conclusion of this experiment is that trying to make schools equally
diverse by equalizing their racial share may not decrease segregation within schools, according to
FSI. Indeed, segregation is lower in presence of a relatively small minority, that is not able to self-
segregate. While the pattern of segregation as a function of the fraction of blacks in the school is
similar, there are differences in the magnitude across schools, due to the difference on how whites
and blacks respond to changes in the fraction of their own groups in the school. Income segrega-
tion slightly decreases in the (originally) white school, while it increases in the (originally) black
school. These conclusions change if we measure segregation using the Spectral Segregation Index
(SSI) of Echenique and Fryer (2007). SSI measures segregation of a group in a way similar to how
the page-rank algorithm computes scores for webpages. That is, the segregation of a student is
higher, the higher the segregation of the students she is linked to. We use the mean SSI to measure
segregation in the school, and our results show that an increase in the fraction of blacks in the
school will always increase segregation. Therefore, a policy that makes schools equally diverse
will be a good compromise in terms of racial and income segregation.

Second, in another policy experiment, I take some students whose parent incomes are above
median in a homogeneously white school and swap them with students with incomes below me-
dian in a homogeneously black school. This policy increases income segregation across schools,
while also increasing racial diversity within schools.4 There is almost no effect on the level of
racial segregation within schools, according to the FSI. On the other hand, the effect on income
segregation is different across the two schools. The school that is homogeneously white becomes
poorer and sees an increase in income segregation. The other school becomes richer and sees al-
most no change in income segregation. According to the SSI, racial and income segregation will
increase in the white school and decrease in the black school. Finally while in the black school the
most popular students are black, in the white school this policy increases the probability that the
most central (and popular kids) will be blacks.

In summary, I show that even absent peer effects or other outcome-related motives for link
formation, a reassignment of students will result in a new equilibrium set of links. The presence of
link externalities in the payoffs may amplify this mechanism, resulting in more or less segregation
by socioeconomic characteristics, a point of practical importance when designing desegregation
programs.

This paper contributes to the empirical network literature by estimating an equilibrium model
of homophily and segregation (Jackson (2008), DePaula (forthcoming), Graham (2017), Chan-
drasekhar (2016)),5 whose results are consistent with recent evidence on homophily in networks
(Currarini et al., 2009; Boucher, 2015; Boucher and Mourifie, forthcoming; Mele, 2017b). I also
find homophily for indirect connections. Models of network formation that exclude link external-
ities in the payoffs are not able to capture this feature (see for example Graham (2017), Dzemski
(2017)), attributing all the homophily to direct links or unobserved characteristics.

The rich dataset used in my estimation partially solves the identification issues highlighted in
Mele (2017a). Since I estimate the model using multiple independent school networks, the identi-

4This simulation is motivated by some evidence that the disparity in average school poverty rates between white
and black students schools is a strong predictor of racial school achievement gaps (Reardon, 2016).

5For additional structural models of network formation see Menzel (2015), Sheng (2012), DePaula et al. (forth-
coming), Leung (2014b), Leung (2014a).
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fication of the structural parameters relies on both variation of network features across schools and
within schools (Lehman, 1983; Wainwright and Jordan, 2008).6

The paper also contributes to the literature on racial segregation in schools. This body of work
focused on the effects of residential and school segregation on minority socioeconomic outcomes
(Cutler and Glaeser (1997), Echenique and Fryer (2007), La Ferrara and Mele (2011), Ananat
(2011)). Other work has considered the effect of school segregation on educational attainment
(Angrist and Lang (2004)). Most studies analyze segregation among schools in a district, but few
authors have used more detailed data at the school level to understand the patterns of racial segrega-
tion within schools (Echenique and Fryer (2007), Echenique et al. (2006), Mele (2017b), Boucher
(2015), Badev (2013)). While it is not clear whether within- or between-schools segregation is
more important in determining outcomes, my approach in this paper provides a structural inter-
pretation of the segregation levels within-schools and takes between-schools segregation as given.
In the policy experiments I modify between-schools segregation by simulating reallocations of the
students, focusing on the equilibrium implications within schools.

This model also provides insights about possible mechanisms behind the moderate increase in
racial segregation after the end of court-ordered desegregation programs (Lutz, 2011) and modest
effects of desegregation program on educational outcomes (Angrist and Lang, 2004).

The rest of the paper is organized as follows. Section 2 briefly describes the theoretical model
and provide the intuition about the equilibrium effects. Section 3 develops the estimation strateg,
and provides an overview of the data and identification. Section 4 report the posterior estimates
and the policy experiments. Some of the computational details are provided in Appendix.

2 A Model of Network Formation
In this section, I briefly present the setup of Mele (2017a)’s model and the equilibrium likelihood.
The proofs and more theoretical results are all contained in that paper. Time is discrete and there
are n players in the network. Each player is characterized by a vector of observable covariates
Xi, that may contain information about race, gender, wealth, age, location, etc. The matrix X =
{X1, X2, ..., Xn} contains these vectors for all the players, stacked by column.

The social network of friendship nominations is represented by a n × n adjacency matrix g,
with entries gij = 1 if individual i nominates individual j as a friend, and gij = 0 otherwise. There
are no self-loops, gii = 0, for any i, and the network is directed: the existence of a link from i to
j does not imply the existence of the link from j to i. This modeling choice reflects the structure
of the Add Health data, where friendship nominations are not necessarily mutual. Some authors
refer to this data as perceived networks.7 Let the realization of the network at time t be denoted
as gt and the realization of the link between i and j at time t be gtij . The network including all the
current links but gtij , i.e. gt\gtij , is denoted as gt−ij; while gt−i denotes the network matrix excluding
the i-th row (i.e. all the links of player i).

The network formation process follows a stochastic best-response dynamics as in Blume (1993).
At the beginning of each period a player i is randomly selected from the population, and he meets
individual j, according to a meeting probability ρ(ij|gt−1, X). Notice that ρ may depend on the
previous period network and the observable characteristics. For example, people that have many

6Similar identification with multiple network is exploited in Nakajima (2007), Badev (2013), Sheng (2012).
7See Wasserman and Faust (1994) for references.
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friends in common may meet with higher probability than people without common friends. Or
students with similar demographics have higher probability of interaction than students with dif-
ferent backgrounds. An implicit assumption of the model is that the player can observe the entire
network and the covariates of all the agents, before making their choice about linking.

Upon meeting agent j, player i decides whether to update his link gij . The preferences of i are
defined over networks and covariates. The utility of player i from network g and covariates X is
given by

Ui (g,X) =
n∑
j=1

gijuij︸ ︷︷ ︸
direct friends

+
n∑
j=1

gijgjimij︸ ︷︷ ︸
mutual friends

+
n∑
j=1

gij

n∑
k=1
k 6=i,j

gjkvik

︸ ︷︷ ︸
friends of friends

+
n∑
j=1

gij

n∑
k=1
k 6=i,j

gkiwkj

︸ ︷︷ ︸
popularity

(1)

where uij ≡ u (Xi, Xj), mij ≡ m (Xi, Xj), vij ≡ v (Xi, Xj) and wij ≡ w (Xi, Xj) are (bounded)
real-valued functions of the attributes. The utility of the network is the sum of the net benefits
received from each link. The total benefit from an additional link has four components.

When a player creates a link to another individual, he receives a direct net benefit uij . The direct
utility includes both costs and benefits and it may possibly be negative: when only homophily
enters payoffs of direct links, the net utility uij is positive if i and j belong to the same group, while
it is negative when they are of different types. In many models this component is parameterized as
uij = bij− cij , where bij indicates the (gross) benefit and cij the cost of forming the additional link
gij . I use the notation uij , since it does not require assumptions on the cost function.

The players receive additional utilitymij if the link is mutual; friendship is valued differently if
the other agent reciprocates. An agent may perceive another individual as a friend, but that person
may not perceive the relationship in the same way.

The players value the composition of friends of friends. When i is deciding whether to befriend
j, she observes j’s friends and their socioeconomic characteristics. Each of j’s friend provides
additional utility v(Xi, Xk) to i. In this model, an agent who has the opportunity to form an
additional link, values a white student with three Hispanic friends as a different good than a white
student with two white friends and one African American friend.8 In other words, individuals value
both exogenous heterogeneity and endogenous heterogeneity: the former is determined by the
socioeconomic characteristics of the agents, while the latter arises endogenously with the process
of network formation. I assume that only friends of friends are valuable and they are perfect
substitutes: individuals do not receive utility from two-links-away friends.

The fourth component corresponds to a popularity effect. When an agent forms a link, he/she
automatically creates an indirect link for other agents that are connect to him/her, thus generating
externalities. This makes him/her more or less appealing to his friends, thus impacting his/her
“popularity”.

Conditional on the meeting mt = ij, player i updates the link gij to maximize his current
utility, taking the existing network gt−ij as given. I assume that the agents do not take into ac-
count the effect of their linking strategy on the future evolution of the network. The players have
complete information, since they can observe the entire network and the individual attributes of all

8A similar assumption is used in De Marti and Zenou (2009) where the agents’ cost of linking depend on the racial
composition of friends of friends. Their model is an extension of the connection model of Jackson and Wolinsky
(1996), and the links are formed with mutual consent. The corresponding network is undirected.

6



agents. Before updating his link to j, individual i receives an idiosyncratic shock ε ∼ F (ε) to his
preferences that the econometrician cannot observe. This shock models unobservables that could
influence the utility of an additional link, e.g. mood, gossips, fights, etc. Player i links agent j at
time t if and only if it is a best response to the current network configuration, i.e. gtij = 1 if and
only if

Ui
(
gtij = 1, gt−1

−ij , X
)
+ ε1t ≥ Ui

(
gtij = 0, gt−1

−ij , X
)
+ ε0t. (2)

I assume that when the equality holds, the agent plays the status quo.9

The model satisfies the following assumptions:

Assumption 1. (Preferences) The payoffs are such thatm (Xi, Xj) = m (Xj, Xi) andw (Xk, Xj) =
v (Xk, Xj) for all players i, j, k.

Assumption 2. (Meetings) Any meeting is possible, i.e., ρ(ij|gt−1, X) = ρ(ij|gt−ij, X) > 0 for any
pair of players i, j.

Assumption 3. (Shocks) Before deciding whether to update a link, players receive a stochastic
shock that follows a Type I extreme value distribution, i.i.d. among links and across time.

The first assumption about symmetry of mij is needed for identification: two individuals with
the same exogenous characteristics Xi = Xj (say two males, whites, enrolled in eleventh grade)
who form a mutual link receive the same uij andmij , but they may have different utilities from that
additional link because of the composition of their friends of friends and their popularity. There-
fore, this part of the assumption helps in identifying the utility from indirect links and popularity.

When i forms a link to j, i creates an externality for all k’s who have linked her: any such k
now has an additional indirect friend, i.e. j, who agent k values by an amount v (Xk, Xj). When
w (Xk, Xj) = v (Xk, Xj), an individual i values his popularity effect as much as k values the
indirect link to j, i.e., i internalizes the externality he creates.10

The second assumption on the meeting process gurantees that any pair of agents can meet. The
main implication is that any equilibrium network can be reached with positive probability. For
example, a discrete uniform distribution satisfies this assumption.

Finally the third assumption allows the Markov chain to escape from the nash networks, elim-
inating absorbing states and making the model ergodic.

As a consequence of these assumptions, the network formation process is a potential game,
where all the incentives of the players can be summarized by an aggregate function of the network
Q.

Q (g,X) =
n∑
i=1

n∑
j=1

gijuij +
n∑
i=1

n∑
j>i

gijgjimij +
n∑
i=1

n∑
j=1
j 6=i

n∑
k=1
k 6=i,j

gijgjkvik, (3)

9This assumption does not affect the main result and is relevant only when the distribution of the preference shocks
is discrete.

10This restriction of the preferences guarantees the model’s coherency in the sense of Tamer (2003). In simple
words, this part of the assumption guarantees that the system of conditional linking probabilities implied by the model
generates a proper joint distribution of the network matrix. Similar restrictions are also encountered in spatial econo-
metrics models (Besag, 1974) and in the literature on qualitative response models (Heckman, 1978; Amemiya, 1981)
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The potential is such that, for any player i and any link gij we have

Q (gij, g−ij, X)−Q (1− gij, g−ij, X) = Ui (gij, g−ij, X)− Ui (1− gij, g−ij, X)

Consider two networks, g = (gij, g−ij) and g′ = (1 − gij, g−ij), that differ only with respect to
one link, gij , chosen by individual i: the difference in utility that agent i receives from the two
networks, Ui (g,X)− Ui (g′, X), is exactly equal to the difference of the potential function evalu-
ated at the two networks, Q (g,X)−Q (g′, X). That is, the potential is an aggregate function that
summarizes both the state of the network and the deterministic incentives of the players in each
state.

The model generates a Markov Chain of networks that converges to a uniques stationary distri-
bution π

π (g,X) =
exp [Q (g,X)]∑

ω∈G
exp [Q (ω,X)]

, (4)

where G is the set of all networks with n nodes. In the long-run the systems spends more time
in network states that have high potential. It can be shown that these networks correspond to
Nash equilibria of a model without any shock to the preferences (Mele (2017a), Jackson and Watts
(2001), Monderer and Shapley (1996)). The function

c (G, X, θ) =
∑
ω∈G

exp [Q (ω,X, θ)] . (5)

is a normalizing constant, that guarantees that (4) is a proper probability. This is the sum of
exponential potential functions over the set G of all networks with n nodes.

2.1 The role of indirect payoffs in equilibrium
To develop the intuition about the role of indirect payoffs in the determination of the equilibrium,
let’s consider a simplified version of this model with only two types of students (e.g. boys and girls,
whites and nonwhites, etc.). The type is a binary variable xi ∈ {0, 1}; let the indicator function
1ij = 1 if xi = xj and 1ij = 0 otherwise. Let the direct payoff be uij = α + β1ij , the mutual
utility mij = 0 and the indirect utility vij = γ1ij for any i, j = 1, ...., n. I assume α < 0 for the
rest of this section, and interpret α as cost of forming a link; so for every link gij , student i pays
a cost α; if j’s type is the same as i, that is xi = xj , student i receives an additional direct payoff
β; finally, student i receives a payoff γ for each indirect friend of j whose type is the same as i’s.
Therefore the utility of player i is

Ui (g,X) = α

n∑
j=1

gij + β
n∑
j=1

gij1ij + γ
n∑
j=1

gij

n∑
k=1
k 6=i,j

(gjk1ik + gki1kj) (6)

There is same-type bias (homophily) in preferences when β > 0 and indirect same-type bias
when γ > 0. If β < 0 we have bias for other types, and γ < 0 implies indirect bias for other types.
Depending on the magnitude of β and γ we can observe homophily or heterophily in aggregate.
The role of α is to drive the density of the network. If α < 0 and large enough we will have
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relatively sparse networks, while α > 0 will necessarily generate dense networks. More generally
the density of the network will depend on the relative magnitude of α, β and γ.

No indirect effects. To understand the equilibrium feedbacks implied by the model let’s first shut
down all payoffs from indirect links, setting γ = 0. Conditional on i meeting j, a link is formed
with probability psij = exp(α + β) if xi = xj; and pdij ∝ exp(α) if xi 6= xj . Therefore we expect
the model to converge to a network with n(n − 1)psij links among people of the same type and
n(n − 1)pdij links among people of different type. Because there is no indirect payoffs, the equi-
librium network will be welfare maximizing. The level of homophily depends on the parameter β:
if β > 0 and large, we will observe most links between people of same type; viceversa, if β < 0
most links will be between people of different type.

Positive indirect payoffs. If γ > 0 and β > 0 the homophily effect will be amplified by the indi-
rect payoff. Indeed, students will tend to form links to same type people with a homogeneous set
of friends of the same type. Compared with the case γ = 0 above, this case will lead to a network
with more same-type links and more clustering, with the creation of very dense communities of
the same type. Indeed, when a player forms a link, the direct effect of homophily β > 0 will give
incentive to form a link with a person of the same type; the indirect effect is that an increase in
the incentive to form links to same type individuals if they have an homogeneous set of friends. If
β < 0 and γ > 0 is large enough, we could still observe homophily in the aggregate, because the
effect of indirect payoffs may offset the direct heterophily. If γ is large enough, it may be profitable
to form links to people of different type, as long as their set of friends is homogeneous. This shows
that the model has the ability to match many possible outcomes in terms of network configurations.

Negative indirect payoffs. If γ < 0, there is a form of competition for the indirect friends, and
having friends of friends of the same type will decrease utility. In such a setting, we can still ob-
serve homophily in aggregate as long as β > 0 and large enough. If β < 0, we will have a network
displaying aggregate heterophily.

Finally, while the model is able to match complex network configurations in the data, the sign
and magnitude of the payoffs is ultimately an empirical question.

3 Estimation Strategy
The estimation recovers the payoffs of the players, that depend on parameters θ = (θu, θm, θv):

uij (θu) = u (Xi, Xj, θu) ; mij (θm) = m (Xi, Xj, θm) ; vij (θv) = v (Xi, Xj, θv)

Assuming that the observed network is a draw from the stationary distribution of the theoretical
model, we can use the distribution in (4) as likelihood of the network data. However, exact max-
imum likelihood estimation because the distributon π (g,X; θ) is proportional to the normalizing
constant c (G, X, θ), whose exact evaluation is infeasible, even in small networks. To be concrete,
consider a network with n = 10 agents. To compute the constant at the current parameter θ we
would need to evaluate the potential function for all 290 w 1027 possible networks with 10 agents
and compute their sum. Assuming that a state-of-the-art supercomputer can evaluate 1012 potential
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functions in 1 second, it would take almost 40 million years to compute the constant at a single
paremeter vector.11 Therefore direct evaluation of the likelihood is impossible. It is easy to show
that the first and second order conditions for the maximum likelihood problem also depend on
the normalizing constant. The same problem arises if we use a Bayesian approach and standard
Markov Chain Monte Carlo samplers to estimate the posterior

p (θ|g,X) =
π (g,X, θ) p (θ)∫

Θ
π (g,X, θ) p (θ) dθ

. (7)

because equation (7) contains the normalizing constant in the likelihood.

3.1 Estimation Algorithm
To solve this estimation problem, I use the exchange algorithm, first developed by Murray et al.
(2006) for distribution with intractable normalizing constants and adapted to network models by
Caimo and Friel (2011) and Mele (2017a). This algorithm uses a double Metropolis-Hastings step
to avoid the computation of the normalizing constant c (G, X, θ) in the likelihood.12

While several authors have proposed similar algorithms in the related literature on Exponential
Random Graphs Models (ERGM),13 the models estimated with this methodology typically have
very few parameters and use data from very small networks. To the best of my knowledge, this is
the first attempt to estimate a high-dimensional model using data from multiple networks. In this
section I describe the algorithm for a single network, while in the appendix I provide the extension
for multiple independent networks.14

The idea of the algorithm is to sample from an augmented distribution using an auxiliary vari-
able. At each iteration, the algorithm proposes a new parameter vector θ′, drawn from a suitable
proposal distribution qθ(θ′|θ); in the second step, it samples a network g′ (the auxiliary variable)
from the likelihood π (g′, X, θ′); finally, the proposed parameter is accepted with a probability
αex(θ, θ

′), such that the Markov chain of parameters generated by these update rules, has the pos-
terior (7) as unique invariant distribution.

ESTIMATION ALGORITHM
Fix the number of simulations R. At each iteration t, with current parameter θt = θ, network data
g and control variables X:

11A network with n players has 2n(n−1) possible network configurations. The schools used in the empirical section
have between 20 and 159 enrolled students. This translates into a minimum of 2380 and a maximum of 225122 possible
network configurations.

12This improvement comes with a cost: the algorithm may produce MCMC chains that have very poor mixing
properties (Caimo and Friel, 2011) and high autocorrelation. I partially correct for this problem by carefully calibrating
the proposal distribution. In this paper I use a random walk proposal. Alternatively one could update the parameters in
blocks or use recent random block techniques as in Chib and Ramamurthy (2009) to improve convergence and mixing.

13Caimo and Friel (2011) use the exchange algorithm to estimate ERGM. They improve the mixing of the sampler
using the snooker algorithm. Koskinen (2008) proposes the Linked Importance Sampler Auxiliary variable (LISA)
algorithm, which uses importance sampling to provide an estimate of the acceptance probability. Another variation of
the algorithm is used in Liang (2010).

14When the data consist of several independent school networks, I use a parallel version of the algorithm that stores
each network in a different processor. Each processor runs the simulations independently and the final results are
summarized in the master processor, that updates the parameters for next iteration. Details in Appendix.
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1. Propose a new parameter θ′ ∼ qθ(·|θ).

2. Simulate R networks from the stationary distribution of the model and collect the last simu-
lated network g′ ∼ P(R)

θ′ (g′|g), using the following steps (2.1) and (2.2) at each iteration:

(2.1) At iteration r, with current network gr and proposed parameter θ′, start the simulations
at network g and propose a network g∗ from a proposal distribution g∗ ∼ qg (g

∗|gr)
(2.2) Update the network: gr+1 = g∗ with probability αmh(gr, g∗) and gr+1 = gr with prob-

ability 1− αmh(gr, g∗), where

αmh(gr, g
∗) = min {1, exp [Q(g∗, X, θ)−Q(gr, X, θ)] qg (gr|g∗) /qg (g∗|gr)} (8)

3. Update the parameter vector: θt+1 = θ′ with probability αex (θ, θ′, g′, g) and θt+1 = θ with
probability 1− αex (θ, θ′, g′, g), where

αex(θ, θ
′, g′, g) = min

{
1,

exp [Q(g′, X, θ)]

exp [Q(g,X, θ)]

p (θ′)

p (θ)

qθ (θ|θ′)
qθ (θ′|θ)

exp [Q(g,X, θ′)]

exp [Q(g′, X, θ′)]

}
. (9)

The appeal of this algorithm is that all quantities in the acceptance ratio (9) can be evaluated: there
are no integrals or normalizing constants to compute. The sampler is likely to accept proposals
that move towards high density regions of the posterior distribution, and it is likely to reject pro-
posals that move towards low density regions of the posterior. Therefore, it produces samples of
parameters that closely resemble draws from the posterior distribution (7). A formal statement
about convergence to the posterior distribution (7) is in Theorem 6 of Mele (2017a).15 In the em-
pirical application we have multiple school networks and therefore the step 2 is parallelized, each
school being simulated in a different processor. This speeds up computations and allows inference
in complex models.

3.2 Likelihood of multiple independent networks
In the empirical analysis, I specify utility functions linear in parameters. Let θu = (θu1, θu2, ..., θuP )

′,
θm = (θm1, θm2, ..., θmL)

′ and θv = (θv1, θv2, ..., θvS)
′ be the utility parameters for u, m and v re-

spectively. Let functions h : RA × RA → R be defined as

uij (θu) =
P∑
p=1

θuphup (Xi, Xj) ; mij (θm) =
L∑
l=1

θmlhml (Xi, Xj) ; vij (θv) =
S∑
s=1

θvshvs (Xi, Xj)

The functions h are quite general. In particular, they can include interactions of multiple control
variables, like gender and race; or interactions of individual and network-level attributes, such as
race interacted with share of a racial group in the network. In principle, the functions used for
direct, mutual and indirect utility may be different. Because of the linearity of uij , mij and vij , the
likelihood an exponential family distribution (Lehman (1983))

π (g,X) =
exp [θ′t (g,X)]∑

ω∈G
exp [θ′t (ω,X)]

, (10)

15Practical implementation of the algorithm is discussed in Mele (2017a).
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where θ = (θu, θm, θv)
′ is a vector of parameters and t (g,X) = (t1 (g,X) , ..., tK (g,X)) is a

vector of sufficient statistics for the network formation model, such as number of links, the number
of links among black students, number of reciprocated links, etc.16

The estimation is performed with a sample of school network data. For each school we observe
the friedship nominations gc and student’s control variables Xc, for c = 1, ..., C. The nature of the
sample and the the survey we use (see section about Add Health data) makes the school networks
independent. Therefore the log-likelihood of our data is the sum of the log-likelihoods of each
school

`(g,X) =
C∑
c=1

θ′t(gc, Xc)− κ(G, X,θ) (11)

where the log-normalizing constant κ(G,X , θ) is

κ(G, X,θ) =
C∑
c=1

log

(∑
ωc∈Gc

exp [θ′t(ωc, Xc)]

)
(12)

This is the log-likelihood of independent observations from an exponential family (Lehman
(1983), Wainwright and Jordan (2008), Snijders (2002), Geyer and Thompson (1992)).

3.3 Identification
The model generates a dynamic sequence of networks, converging to stationarity. In principle,
if the researcher has access to data where the same network is observed over time, we can esti-
mate and identify the transition probability of the Markov Chain, that is the meeting probability
and the conditional linking probability implied by the payoffs and extreme value distributed and
independent shocks.

However, the data consists of only one observation at a single point in time. With such data, we
cannot identify the transition probability of the model. The crucial assumptions to get identification
of the stationary distribution are that shocks are independent extreme value and the meeting process
does not depend on the existence of a link between two players. These assumptions make the
stationary distribution independent of the specific meeting process, while allowing us to write it in
closed-form as an exponential family distribution.

This allows me to identify the preferences of individuals from a network drawn from the sta-
tionary distribution. My assumptions make sure that the conditional link probability of each player
is consistent with the likelihood of the whole network (Tamer, 2003). This is achieved by the
assumptions on the payoff functions that guarantee the existence of a potential.

Since the likelihood of the model belongs to the exponential family (Lehman, 1983), when we
observe a sample of independent networks (at a single point in time) the parameters are identified

16This likelihood defines an exponential random graph model (ERGM), a statistical model of networks used in many
applications (Snijders (2002),Frank and Strauss (1986), Moody (2001), Boucher and Mourifie (forthcoming),DePaula
(forthcoming), Chandrasekhar (2016)). My theoretical model can be interpreted as providing the microfoundations
for exponential random graphs. In this sense, we can interpret the ERGM as the stationary equilibrium of a strategic
game of network formation, where myopic agents follow a stochastic best response dynamics and utilities are linear
functions of the parameters.
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through the variation of the sufficient statistics across networks. If the sufficient statistics are not
linearly dependent, then the exponential family is minimal and the likelihood is strictly concave,
therefore the mode is unique (Geyer and Thompson, 1992; Lehman, 1983; Wainwright and Jordan,
2008). Our priors are relatively flat, so most of the information about the posterior is given by the
likelihood.

As an aside, notice that identification may still fail when the observed sufficient statistics are
“extreme”. As a simple example, consider the case in which the network does not have any recip-
rocated links or does not have any links between hispanics. In that case it will be impossible to
estimate the effect of mutual links and the homophily of hispanic students.

While in principle it is possible to add unobserved heterogeneity in the model, it is not clear that
we can identify such effects using only one network observation (DePaula, forthcoming; Graham,
2017; Chandrasekhar, 2016). The literature on latent position network models suggests that in
some special case this is possible (Airoldi et al., 2008), however such models consider links that
are conditionally independent, while in our model the links are conditionally dependent.

Figure 1: Three school friendship networks from Add Health, saturated sample

white=Whites; blue = African Americans; yellow = Asians; green = Hispanics; red = Others

A. School 28 B. School 58 C. School 77

Note: The graphs represent the friendship network of a school extracted from AddHealth. Each dot represents a student, each arrow is a friend
nomination. The colors represent racial groups.

3.4 The Add Health Data
The National Longitudinal Study of Adolescent Health (Add Health) is a dataset containing infor-
mation on a nationally representative sample of US schools. The survey started in 1994, when
the 90118 participants were entering grades 7-12, and the project collected data in four successive
waves.17 Each student responded to an in-school questionnaire, and a subsample of 20745 was
given an in-home interview to collect more detailed information about behaviors, characteristics
and health status. In this paper I use only data from the saturated sample of Wave I, containing
information on 16 schools. Each student in this sample completed both the in-school and in-home

17More details about the sampling design and the representativeness are contained in Moody (2001) and the Add
Health website http://www.cpc.unc.edu/projects/addhealth/projects/addhealth
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questionnaires, and the researchers made a significant effort to avoid any missing information on
the students.18

Most schools in the saturated sample are relatively small and enroll about 100 students, and the
largest schools enroll 1664, 811 and 159 students. The final sample includes 3604 students in 16
different schools. I also provide estimates excluding the two largest schools, for which the sample
is 1129 students.

The in-school questionnaire collects the social network of each participant. A sub-sample of
20745 students was also given an in-home questionnaire, that collected most of the sensible data,
in addition to the network data. Each student was given a school roster and was asked to identify
up to five male and five female friends.19 I use the friendship nominations as proxy for the social
network in a school. The resulting network is directed: Paul may nominate Jim, but this does
not necessarily imply that Jim nominates Paul.20 The model developed in this paper takes this
feature of the data into account. In Figure 1 we report three school networks from the saturated
sample, where each dot is a student, its color represent the racial group and an arrow is a friendship
nomination.

In the empirical specification I control for racial group, grade and gender. A student with a
missing value in any of these variables is dropped from the sample. Each student that declares to
be of Hispanic origin is considered Hispanic. The remaining non-Hispanic students are assigned to
the racial group they declared. Therefore the racial categories are: White, Black, Asian, Hispanic
and Other race. Other race contains Native Americans. I include controls for parental income,
using a question from the parent questionnaire.21

There may be some unobservable variables that affect network formation. For example some
students may be ”cool” and receive more friendship links than others. Unobserved heterogeneity
can be included in the model at the cost of significant additional computational burden in forms
of random effects for each node.22 To partially control for such unobserved determinants of link
formation, I use information from the interviewer remarks about the physical attractiveness and
personality of the student interviewed. I define a dummy variable ”beauty”, which is equal to 1 if
the interviewer reported that the students was very attractive. Analogously, the dummy ”personal-
ity” is equal to 1 if the interviewer reported that the personality of the student was very attractive.
Finally, I include school dummies to control for different schools characteristics.

Descriptive statistics are in Table 1. There is a certain amount of variation in the number of
links: some schools are more social and form many links per capita, while other schools have

18While this sample contains no missing covariate information for the students, there are several missing values for
the parental variables.

19In the in-home interviews there are 20745 students. Of these, about 5% nominated 5 male friends and 5% nomi-
nated 5 female friends. Only about 3% of the 20745 students nominated both 5 males and 5 females friends (Moody,
2001).

20Some authors do not consider this feature of the data and they recode the friendships as mutual: if a student
nominates another one, the opposite nomination is also assumed.

21There are several cases in which the family income is missing. For those observations, I imputed values drawn
from the unconditional income distribution of the community. An alternative but computationally very costly alterna-
tive is to introduce an additional step in the simulation, in which the imputation of missing incomes is done at each
iteration. Given the computational burden of my estimation exercise I did not pursue this alternative here.

22See Mele (2017a) for a discussion. Badev (2013) also discusses the introduction of random effects. Mele (2017b)
includes unobserved heterogeneity in the form of unobserved communities. The computational burden of the exchange
algorithm for such model is impractical for estimation of networks with more than 200 nodes.
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very few friendship nominations. The ratio of boys to girls is quite balanced in almost all schools,
except school 369, where female students are a larger majority.

Panel A summarizes the racial composition. Many schools are almost racially homogeneous.
School 1, 28, 77, 126 and 175 are more diverse as reflected in the Racial Fragmentation index
(Alesina and Ferrara (2000), Alesina et al. (1999)), an index that measures the probability that two
randomly chosen students in the school belong to different racial groups.23 An index of 0 indicates
that there is only one racial group and the population is perfectly homogeneous. Higher values
of the index represents increasing levels of racial heterogeneity. Panel B summarizes the grade
composition. Most schools offer all grades from 7th to 12th, with homogeneous population across
grades. Several schools only have lower grades.

Panel C analyzes the racial, gender and income segregation of each school. Income segregation
is measured in two ways: the segregation of the students in the 90th percentile from the rest and
the segregation of students above median income from the rest. The measures of segregation are
the Freeman Segregation Index (FSI) (Freeman, 1972) and the Spectral Segregation Index (SSI)
(Echenique and Fryer, 2007). The FSI varies from 0 to 1 and measures the difference between the
expected and actual number of links among individuals of different groups. An index of 0 means
that the actual network closely resembles one in which links are formed at random. Higher values
indicate more segregation. The index varies between 0 and 1, where the maximum corresponds
to a network in which there are no cross-group links. The SSI computes segregation usin spectral
methods. The intuition is as follows: first order segregation of a student is the share of a student’s
social interations with students in their own group; second order segregation is the average over
the student’s own group of first order segregation; n-th order segregation is the average of the
students’s own group of n-1-th segregation. The student’s SSI is the limit for n going to infinity
of this sequence. We take the average students SSI in a school as measure of segregation in the
school. SSI also varies from 0 to 1 as segregation increases.

The schools are quite segregated based on race, as long as there is some diversity in the school.
Income segregation and gender segregation seem to be lower in these schools. We notice that
the SSI measures high segregation in schools that are almost homogeneous by race, because the
largest connected component of the network contains only individuals of the same group. However,
FSI measures very low segregation when the school is homogeneous. We use both measures to
understand the effects of our counterfactual simulations in the next section.

4 Empirical Results

4.1 Posterior estimates
In Table 2 we report the estimated posterior means for 6 models. More detailed tables includ-
ing posterior mean, median, standard deviation and 95% credible intervals are in Appendix. All
the estimated posterior means have small credible intervals, therefore their sign and magnitude is
estimated very precisely.24

The models in columns (1)-(4) are estimated with the smaller 14 schools in the saturated sam-
ple. This sample includes a total of 1129 students and 112,751 pairs of potential links. The latter

23If there are K racial groups and the share of each race is sk, the index is FRAG = 1−
∑K

k=1(sk)
2.

24All the replication codes are availabile at https://github.com/meleangelo/segnet.
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should be thought of as the number of observations of our model, since we are modeling the links
probabilities and decisions. Columns (5) and (6) are estimated with the full saturated sample in-
cluding 16 schools. This includes the two largest schools with 811 and 1664 students, increasing
our student sample to 3604 and the number of dyads to 3,536,893. In models (1), (3) and (5)
preferences are modeled as function of the directed utility only, therefore omitting the externali-
ties payoffs; in models (2), (4) and (6) we include all the payoffs and estimate the preferences for
reciprocity and indirect links. All the models control for other school characteristics with a set of
school dummies.

Each estimate measures the marginal effect of the variable on the payoff: for example, the
parameter associated with the direct utility of WHITE-WHITE measures the marginal utility of a
white student when forming a link to another white student, other things being equal.

Model (1) does not include any externality, thus being a standard (Bayesian) logistic regression
estimate. Model (2) has the same specification as (1), but includes mutual and indirect utility in
the specification. The signs of the coefficients for the direct utility seem to agree among the two
specifications, except in three cases: once we control for mutual and indirect utility, homophily by
gender (SAME GENDER), physical attractiveness of the alter (ATTRACTIVE j (Phys)) and the
effect of white share in the school (SHARE WHITES) change sign. We notice that the signs in
model (2) are consistent with the remaining specifications (3)-(6).

The coefficient for racial homophily are positive in both specifications (WHITE-WHITE, BLACK-
BLACK, HISP-HISP). In model (2) the payoff from mutual links display racial homophily as well,
while for indirect links there is mixed evidence, as there is a negative coefficient for BLACK-
BLACK payoff.

Models (3)-(6) are estimated according to our favorite specification. In these models we control
for some demographics of the student nominating friends: gender, race and income of the parents
(in logs).

A comparison of models (3) and (5), as well as (4) and (6) shows that the sample with the 14
small schools and the larger sample including all the 16 schools of the saturated sample generate
qualitatively similar estimates, while the magnitudes of the parameters are different. Because
model (6) is estimated with more than 3.5 million observations (the number of possible student
pairs) we are more confident about these estimates and discuss these in detail.

In model (6), the estimated preferences show racial homophily for direct and indirect links,
except for hispanic students. For mutual links, only blacks seem to show homophily. Hispanics
have the highest propensity to form new links, but interestingly prefer links outside their own
racial group, especially when the share of hispanic students in the school is relatively large. The
mutual links constant is positive, showing that reciprocity provides positive baseline utility, but
the constant for the indirect friends payoff is negative, suggesting congestion or competition for
indirect friends. High income reduces the willingness to form links, while males seems to be more
active than females in friendship formation.
An increase in the share of blacks and hispanic students will increase willingness to link, while
the opposite happens with the share of caucasian students. White and black students homophily is
higher in schools with a higher share of whites and blacks. This is important as different groups
will possibly have different responses to desegregation efforts: some group may engage more in
interracial friendships, while some group may segregate even more.

Physically attractive students do not initiate friendships often, but receive friendship nomina-
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Table 2: Posterior mean of estimated models

(1) (2) (3) (4) (5) (6)
A. Direct utility (uij )

CONSTANT -6.9201 -5.5381 -6.6500 -5.9132 -7.2182 -5.8070
MALE i -0.1517 0.0463 -0.2718 0.2350
WHITE i -0.1710 0.0044a 0.0440a 0.3023
BLACK i 1.0451 1.1310 0.7074 1.1801
HISP i 2.0990 2.2806 1.4590 2.0295
INCOME i (logs) -2.0543 -1.6492 -1.8738 -1.4645
SAME GENDER -0.4545 0.1850 0.2067 0.4851 0.3154 0.7644
SAME GRADE 2.3124 2.2384 2.3817 2.0113 2.5185 2.1800
WHITE-WHITE 0.3504 0.5414 1.0138 0.5720 0.9959 0.2739
BLACK-BLACK 0.1443 0.3660 1.6491 1.1445 1.5347 0.9405
HISP-HISP 1.8597 1.6794 0.3186 -0.2269 0.7130 -0.1394
ATTRACTIVE i (Phys) 0.2757 0.3068 -2.3568 -2.2413 -1.9291 -1.9430
ATTRACTIVE j (Phys) -0.0410 0.2322 2.5166 1.5861 2.7615 1.2609
ATTRACTIVE i (Pers) -0.4402 0.0063a -0.4964 -0.1570 -0.8646 -0.1631
ATTRACTIVE j (Pers) 1.0672 0.8678 -1.0932 -0.7390 -0.6361 -0.3939
INCOME i - INCOME j (logs) 0.1793 0.1462 0.8883 0.9012 0.9938 0.7403
INCOME i + INCOME j (logs) -0.0882 -0.0806 1.0947 0.9244 0.8977 0.6892
SHARE WHITES 0.9070 -0.4814 -1.7088 -1.4420 -1.5748 -1.6126
SHARE BLACKS 3.2238 3.0985 1.3416 1.8309 0.7645 1.9618
SHARE HISP 2.524 2.444 0.8397 0.7798 1.0078 0.7731
WHITE-WHITE * SHARE WHITES 1.3962 1.0094 4.3915 2.7840 4.7269 2.3272
BLACK-BLACK * SHARE BLACKS 0.4664 0.1478 0.2528 0.4028 0.1172 0.2516
HISP-HISP * SHARE HISP -1.5643 -1.4255 -1.6908 -1.3630 -1.3872 -1.1400

B. Mutual utility (mij )
CONSTANT 1.1853 6.1668 5.3139
SAME GENDER 1.1652 1.0716 1.1539
SAME GRADE -1.6882 -3.0514 -3.0575
WHITE-WHITE 0.0073a -0.6017 -0.4960
BLACK-BLACK 0.7468 1.1177 0.7067
HISP-HISP 0.7779 -1.4659 -1.4639

C. Indirect utility and Popularity (vij )
CONSTANT -0.2891 -0.4705 -0.4308
SAME GENDER 0.1721 -0.4074 -0.3987
SAME GRADE -0.3145 0.1136 0.3266
WHITE-WHITE 0.2239 0.1856 0.2978
BLACK-BLACK -0.1364 0.1372 0.1202
HISP-HISP 0.4328 -0.5067 -0.2859

SCHOOL DUMMIES YES YES YES YES YES YES
D. Sample size

# Schools 14 14 14 14 16 16
# Students 1129 1129 1129 1129 3604 3604
# Pairs/Dyads 112,751 112,751 112,751 112,751 3,536,893 3,536,893

Models (1)-(4): posterior sample of 100,000 parameter and 5000 network simulations per parameter. Models (5)-(6):
posterior sample of 20,000 parameter and 10,000 network simulations per parameter. a credible 95% interval contains
both positive and negative values.

tions with higher frequency. Students with attractive personalities form and receive fewer nom-
inations. Income differences increase the likelihood of friendship, suggesting that students tend
to mix based on income levels; higher income levels of the pair involved in the link increase the
number of friendships formed. The total number of friends is higher in schools with higher fraction
of minorities.
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4.2 Policy Experiments
In this section the estimated model is used to estimate the effect of counterfactual policies on
several network characteristics. I simulate 1000 equilibrium networks for each policy change,
using the posterior mean estimated in Table 2, column (6). For each network, I compute measures
of segregation, clustering and centrality. 25

4.2.1 Reallocation of students based on race

Schools 88 and 106 are very racially homogeneous, being almost completely white and black,
respectively. In these simulations, a total of x white students is moved from school 88 to school
106; viceversa, the same number x of black students is moved from school 106 to school 88. This
policy changes the racial heterogeneity levels within schools by directly targeting students based
on their race. Our model predicts that in equilibrium the students will best respond to the new
environmnet by modifying their linking strategy.

In Figure 2 we show the effect of this policy on the average segregation in the schools. We have
computed segregation beased on race, gender and income. In all graphs, the red line represents the
Freeman Segregation Index (FSI) of Freeman (1972), the blue is the Spectral Segregation Index
(SSI) of Echenique and Fryer (2007).

Figure 2: Average segregation in school 88 and 106
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Notes: each policy simulation simulates the network using 1000 draws from the posterior distribution estimated in Model (6) of Table 2.

Let’s first consider the FSI (in red in Figure 2). In school 88, as the policy increases diversity
by increasing the fraction of blacks, racial segregation first decreases and then starts increasing
again. The intuition for this outcome is that when the fraction of minority students in the school
is small enough, they need to find friends in another racial group. However, when the size of the

25The complete simulation codes are available in Github.
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minority in the school is large enough the homophily effect prevails and minorities will tend to
self-segregate.

The results on gender segregation suggest that the segregation would increase slightly as the
fraction of black students increases and then decrease.

These results based on the Freeman Segregation Index, suggest that a policy promoting perfect
racial integration among schools, would not necessarily increase interactions among students of
different racial background.

On the other hand, the results using the Spectral Segregation Index (SSI, in blue in Figure 2,
seem to point to a slightly different conclusion.

The result for the SSI should be thought as what happens to the average student in the school.
This index says that at least in term of the SSI, the average student will be exposed to higher gender,
race and income segregation as the fraction of blacks in the school increases. According to this
measure of segregation, a perfectly integrated school would be a good compromise.

This policy has an effect on several structural characteristics of the network. Figure 3 (left
panels) shows the density and transitivity of the network as the diversity of the schools changes.
An increase in the fraction of blacks will increase both density and clustering in both schools.

Figure 3: Density and Clustering
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Notes: each policy simulation simulates the network using 1000 draws from the posterior distribution estimated in Model (6) of Table 2.

Figure 4 shows race and gender of the most central students as measured by three indicators:
1) indegree centrality measures popularity; 2) outdegree centrality measures social activity; 3)
eigenvector centrality measures the most crucial node. These indicators are usually correlated
with performance(Calvo-Armengol et al., 2009). The graphs on the top compare schools based on
indegree centrality, in the middle we have outdegree centrality and at the bottom the eigenvector
centrality.

In many cases the most popular person is a girl, in both schools.
The probability that the most central students is black increases with the fraction of blacks in

the school. This pattern seems to be similar in both schools and across the centrality indicators.
According to our most intuitive measure of segregation, the Freeman Segregation Index (FSI),

the conclusion of this experiment is that trying to make schools equally diverse by equalizing their
racial share may not decrease segregation necessarily. Indeed it seems better to have a relatively
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Figure 4: Gender and Race of the most central
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Notes: each policy simulation simulates the network using 1000 draws from the posterior distribution estimated in Model (6) of Table 2.

small minority, that will not be able to self-segregate. While the patterns of segregation as we
increase the fraction of blacks in the school look the same, there are differences in the magnitude
of segregation across schools, due to the difference in which whites and blacks respond to changes
in the fraction of their own groups in the school. Income segregation slightly decreases with the
reallocation of blacks to school 88, while it increases for school 106. According to the Spectral
Segregation Index (SSI), an increase in the fraction of blacks will always increase segregation.
This means that a policy that makes schools equally diverse will be a good compromise in terms
of racial and income segregation.

The policy will increase density and clustering in school 88, while decreasing both in school
106. If schools are equally racially diverse, black students will be on average more popular and
central. This is also true if whites are a small minority.

4.2.2 Reallocation of students based on income

The second policy experiment consists of swapping students based on their parental income. For
both school 88 and 106, we compute the median income of the parents, and we swap students of
school 88 with incomes above median with students of school 106 with incomes below median.

This procedure increases segregation by income across the schools, making them more ho-
mogeneous by income. School 88 becomes populated by poorer students, while school 106 be-
comes richer. On the other hand, this policy increases racial diversity within schools, because we
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are swapping white/caucasian students from school 88 with black students from school 106, thus
making schools more heterogeneous by race.

Figure 5: Average segregation in school 88 and 106
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Notes: each policy simulation simulates the network using 1000 draws from the posterior distribution estimated in Model (6) of Table 2.

In Figure 5 we show the effect of this policy on the average segregation in school 88 and
106. To interpret the results, notice that for school 88, moving left to right on the x-axis makes
the school more homogeneous by income (and poorer) and more diverse by race. Viceversa, for
school 106, moving left to right on the x-axis makes the school more heterogeneous by income and
less diverse by race.

According to the FSI, for school 88 there is a moderate effect on racial segregation, that follows
the similar U-shaped pattern we have seen in the previous race-based policy. Income segregation
increases with income homogeneity and racial heterogeneity. This reflects the fact that prefer-
ences estimated in model 6 of Table 2 show heterophily in income levels. On the other hand, in
school 106 there is no effect in income segregation, and gender segregation decreases with income
homogeneity and racial diversity.

The SSI index of segregation mirrors the patterns of the policy with re-allocation based on race.
In Figure 3 (right panels) we show the density and transitivity of the network. While school 88

does not show any substantial change, school 106’s density and clustering increase with income
homogeneity and racial diversity. In this school there is no change in which racial group is most
central as a consequence of the policy (see Figure 6, right panel). On the other hand, for school 88
the increase in income homogeneity also increases the popularity of black students.

In summary, this policy increases segregation by income across the schools, making income
distribution more homogeneous within schools and simultaneusly increasing racial diversity. This
has asymmetric effects in the two schools racial segregation, as measured by the FSI.
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Figure 6: Gender and Race of the most central
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Notes: each policy simulation simulates the network using 1000 draws from the posterior distribution estimated in Model (6) of Table 2.

5 Conclusions
This paper analyzed racial segregation in schools, guided by an equilibrium model of network for-
mation. The model generates segregation as an equilibrium outcome and allows me to estimate the
preferences of students that include direct effects of observables and indirect payoffs for recipro-
cated relationships and indirect friends. I find homophily by race, both in direct and indirect links.
My specification allows homophily to vary with the fraction of the racial groups in the school: an
increase in the fraction of white students decreases the propensity of white students to form links
within the same racial group; the opposite holds for hispanics or blacks. These differences are im-
portant to understand the effect of policies that modify the relative shares of groups in the school.
There is evidence of homophily beyond direct links, thus supporting a model that includes indirect
effects of linking in the preferences.

To illustrate the implications of such estimated preferences, I simulate two “desegregation”
policies using two racially homogeneous schools from my sample, where students populations
are almost completely white and black, respectively. The model simulations provide predictions
about the expected levels of segregation and network features implied by swapping students among
schools.

The first policy simulation swaps black students from one school with white students from
the other school, thus modifying the racial balance within school. Interestingly the outcomes of
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these policy vary by the way we measure segregation. According to the Freeman Segregation
Index, integrating the two schools may potentially increase segregation. However, according to the
Spectral Segregation Index, perfect integration across the schools leads to the best compromise in
terms of racial segregation.

The second simulation decreases income heterogeneity within schools by swapping kids with
parental income above median in a school with students whose parental income is below median
in the other school. This simultaneously increase racial diversity within schools. According to the
FSI there is no much effect on the racial segregation in both schools. However, income segregation
increases in the school that becomes poorer. In the latter school the popularity of black students
increases with income homogeneity (and racial diversity).

These results suggest that desegregation policies do not necessarily lead to more interactions
among students of different ethnic or socioeconomic background.
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A Computational Details
The linear specification allows for utility functions involving network-level controls, when es-
timation is performed using multiple networks. This can be achieved by a specification of the
parameters such as

θp = θp0 +
C∑
c=1

θpcZc (13)

where Zc is a network-level variable. The estimation methodology presented above can be ap-
plied to this specification without any change. However, estimation of a model with unobserved
heterogeneity would require significant additional computational effort (see Appendix C in Mele
(2017a)).

I choose somewhat vague priors for the parameters to extract most of the information from the
data. I assume independent normal priors

p (θ) = N (0, 3IP ) , (14)

where P is the number of parameters.
The proposal distribution for the posterior simulation is

qθ(·|θ) = N (0, δΣ) , (15)

where δ is a scaling factor and Σ is a covariance matrix.
I use an adaptive procedure to determine a suitable Σ. I start the iterations with Σ = λIP ,

where λ is a vector of standard deviations. I choose λ so that the sampler accepts at least 20%-
25% of the proposed parameters, as is standard in the literature (Gelman et al., 2003; Robert and
Casella, 2005). I run the chain and monitor convergence using standard methods. Once the chains
have reached approximate convergence, I estimate the covariance matrix of the chains and use it as
an approximate Σ for the next set of simulations. The scaling factor is δ = 2.382/P as suggested
in Gelman et al. (1996).

The network sampler uses a proposal qg (g|g′), that selects a link to be updated at each period
according to a discrete uniform distribution. The probability of network inversion is pinv = 0.01.

All the posterior distributions shown in the following graphs are obtained with a simulation of
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100000 Metropolis-Hastings updates of the parameters. These simulations start from values found
after extensive experimentation with different starting values and burn-in periods, monitoring con-
vergence using standard methods. For each parameter update, I simulate the network for 5000
iterations to collect a sample from the stationary distribution. For the estimation with 16 schools I
ran 20000 parameter simulations and 10000 network simulations for each parameter.

A.1 Parallel estimation with multiple networks
When data from multiple independent networks are available the estimation routines are easily
adapted. Assume the researcher has data from C networks: let gc and Xc denote the network
matrix and the individual controls for network c, c = 1, ..., C. The aggregate data are denoted as
g = {g1, ..., gc} and X = {X1, ..., Xc}.

Assuming each network is drawn from the stationary equilibrium of the model, each network
has distribution

π (gc, Xc, θ) =
exp [Q (gc, Xc, θ)]∑

ω∈Gc
exp [Q (ωc, Xc, θ)]

(16)

Since each network is independent, the likelihood of the data (g,X) can be written as

π (g,X, θ) =
C∏
c=1

π (gc, Xc, θ) =
C∏
c=1

{
exp [Q (gc, Xc, θ)]

c (Gc, Xc, θ)

}

=
exp

[∑C
c=1Q (gc, Xc, θ)

]
∏C

c=1 c (Gc, Xc, θ)
=

exp
[∑C

c=1Q (gc, Xc, θ)
]

C (G, X, θ)

where G =
⋃C
c=1 Gc and X = {X1, ..., XC}. The likelihood for multiple independent networks is

of the same form as the likelihood for one network observation. The structure of this likelihood
makes parallelization extremely easy: each network can be simulated independently using the
network simulation algorithm; at the end of the simulation we collect the last network and compute
the potential; then we compute the sum of potentials and use it to compute the probability of update.
Therefore, the algorithm is modified as follows

ALGORITHM 1. (Parallel approximate exchange algorithm
Fix the number of simulations R. Store each network data (gc, Xc) in a different processor/core.
At each iteration t, with current parameter θt = θ and network data g

1. Propose a new parameter θ′ from a distribution qθ(·|θ)

θ′ ∼ qθ(·|θ) (17)

2. For each processor c, start the network sampler at the observed network gc, iterating for R
steps using parameter θ′ and collect the last simulated network g′c

g′c ∼ P
(R)
θ′ (g′c|gc) (18)
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3. Update the parameter according to

θt+1 =

{
θ′ with prob. αpex (θ, θ′)
θ with prob. 1− αpex (θ, θ′)

where

αpex(θ, θ
′) = min

1,
exp

[∑C
c=1Q(g

′
c, Xc, θ)

]
exp

[∑C
c=1Q(gc, Xc, θ)

] p (θ′)
p (θ)

qθ (θ|θ′)
qθ (θ′|θ)

exp
[∑C

c=1Q(gc, Xc, θ
′)
]

exp
[∑C

c=1Q(g
′
c, Xc, θ′)

]
(19)

The speed of the algorithm depends on the largest network in the data. Since each parameter
update requires the result of each processor simulation there is some idle time, since small networks
are simulated much faster. However, one could easily modify the algorithm to have different
number of network simulations for networks of different sizes, so for each c we would have a
different Rc

B Freeman Segregation Index
The Freeman segregation index measures the degree of segregation in a population with two groups
(Freeman, 1972). Assume there are two groups, A and B. Let nAB be the total number of links
that individuals of group A form to individuals of group B. Let nBA, nBB and nAA be analogously
defined. The original index developed by Freeman (1972) is defined as

FSI =
E [nAB] + E [nBA]− (nAB + nBA)

E [nAB] + E [nBA]
(20)

When the link formation does not depend on the identity of individuals, then the links should be
randomly distributed with respect to identity. Therefore, the index measures the difference between
the expected and actual number of links among individuals of different groups, as a fraction of the
expected links. An index of 0 means that the actual network closely resembles one in which
links are formed at random. Higher values indicate more segregation. In this paper segregation is
measured using the index26

SEG = max {0, FSI} (21)

The index varies between 0 and 1, where the maximum corresponds to a network in which there
are no cross-group links.

To complete the derivation of the index, the expected number of cross-group links is computed
as

E [nAB] =
(nAA + nAB) (nAB + nBB)

nAA + nAB + nBA + nBB

E [nBA] =
(nBA + nBB) (nAA + nBA)

nAA + nAB + nBA + nBB
26The index (20) varies between -1 and 1. However, the interpretation of the index when it assumes negative

values is not clear. Therefore Freeman (1972) suggests to use only when it is nonnegative, to measure the presence of
segregation
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C Posterior estimates (complete tables)

Table 3: Model (2) in Table 2

mean median std. dev. 5 pctile 95 pctile
A. DIRECT UTILITY (uij )

CONSTANT -5.5381 -5.5384 0.0261 -5.5805 -5.4942
SAME GENDER 0.1850 0.1850 0.0133 0.1631 0.2069
SAME GRADE 2.2384 2.2384 0.0030 2.2334 2.2434
WHITE-WHITE 0.5414 0.5413 0.0048 0.5335 0.5494
BLACK-BLACK 0.3660 0.3661 0.0173 0.3375 0.3943
HISP-HISP 1.6794 1.6794 0.0322 1.6267 1.7324
ATTRACTIVE i (Physical) 0.3068 0.3070 0.0270 0.2623 0.3509
ATTRACTIVE j (Physical) 0.2322 0.2322 0.0076 0.2198 0.2448
ATTRACTIVE i (Personality) 0.0063 0.0061 0.0128 -0.0145 0.0275
ATTRACTIVE j (Personality) 0.8678 0.8679 0.0173 0.8391 0.8959
Income i - Income j (logs) 0.1462 0.1461 0.0068 0.1351 0.1574
Income i + Income j(logs) -0.0806 -0.0806 0.0049 -0.0885 -0.0725
FRACTION WHITES -0.4814 -0.4814 0.0320 -0.5338 -0.4284
FRACTION BLACKS 3.0985 3.0984 0.0156 3.0730 3.1242
FRACTION HISP 2.4440 2.4439 0.0207 2.4100 2.4781
WHITE-WHITE * FRACTION WHITES 1.0094 1.0095 0.0267 0.9659 1.0532
BLACK-BLACK * FRACTION BLACKS 0.1478 0.1478 0.0095 0.1322 0.1633
HISP-HISP * FRACTION HISP -1.4255 -1.4258 0.0309 -1.4758 -1.3744
SCHOOL 1 -2.1181 -2.1186 0.0616 -2.2192 -2.0164
SCHOOL 2 1.5065 1.5066 0.0105 1.4891 1.5236
SCHOOL 3 -0.0532 -0.0531 0.0299 -0.1022 -0.0040
SCHOOL 4 1.1044 1.1043 0.0154 1.0793 1.1297
SCHOOL 5 1.3247 1.3246 0.0091 1.3098 1.3397
SCHOOL 6 0.4666 0.4667 0.0224 0.4300 0.5037
SCHOOL 7 2.3742 2.3741 0.0261 2.3313 2.4171
SCHOOL 8 0.2750 0.2750 0.0382 0.2125 0.3374
SCHOOL 9 -1.3631 -1.3631 0.0281 -1.4090 -1.3171
SCHOOL 10 1.7814 1.7817 0.0339 1.7255 1.8369
SCHOOL 11 -1.4060 -1.4059 0.0094 -1.4216 -1.3905
SCHOOL 12 2.9026 2.9027 0.0241 2.8627 2.9422
SCHOOL 13 0.3076 0.3076 0.0420 0.2388 0.3770

B. MUTUAL UTILITY (mij )

CONSTANT 1.1853 1.1852 0.0388 1.1218 1.2484
SAME GENDER 1.1652 1.1653 0.0121 1.1452 1.1849
SAME GRADE -1.6882 -1.6883 0.0210 -1.7228 -1.6537
WHITE-WHITE 0.0073 0.0074 0.0132 -0.0147 0.0289
BLACK-BLACK 0.7468 0.7468 0.0318 0.6943 0.7992
HISP-HISP 0.7779 0.7778 0.0089 0.7635 0.7925

C. INDIRECT UTILITY AND POPULARITY (vij )

CONSTANT -0.2891 -0.2890 0.0129 -0.3105 -0.2680
SAME GENDER 0.1721 0.1721 0.0053 0.1635 0.1808
SAME GRADE -0.3145 -0.3145 0.0066 -0.3254 -0.3038
WHITE-WHITE 0.2239 0.2238 0.0085 0.2099 0.2379
BLACK-BLACK -0.1364 -0.1364 0.0146 -0.1605 -0.1124
HISP-HISP 0.4328 0.4327 0.0105 0.4157 0.4501

Estimated posterior distribution for the full structural model. The estimates are obtained with a sample of 100000
parameter simulations, and 5000 network simulations for each parameter proposal.
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Table 4: Model (1) in Table 2

mean median std. dev. 5 pctile 95 pctile
CONSTANT -6.9201 -6.9196 0.0393 -6.9854 -6.8562
SAME GENDER -0.4545 -0.4546 0.0204 -0.4884 -0.4213
SAME GRADE 2.3124 2.3124 0.0030 2.3075 2.3174
WHITE-WHITE 0.3504 0.3505 0.0061 0.3402 0.3603
BLACK-BLACK 0.1443 0.1444 0.0183 0.1135 0.1742
HISP-HISP 1.8597 1.8598 0.0297 1.8109 1.9085
ATTRACTIVE i (Physical) 0.2757 0.2760 0.0267 0.2314 0.3191
ATTRACTIVE j (Physical) -0.0410 -0.0411 0.0104 -0.0583 -0.0241
ATTRACTIVE i (Personality) -0.4402 -0.4399 0.0152 -0.4657 -0.4158
ATTRACTIVE j (Personality) 1.0672 1.0672 0.0179 1.0378 1.0966
Income i - Income j (logs) 0.1793 0.1792 0.0071 0.1676 0.1911
Income i + Income j (logs) -0.0882 -0.0882 0.0050 -0.0963 -0.0800
FRACTION WHITES 0.9070 0.9067 0.0465 0.8312 0.9843
FRACTION BLACKS 3.2238 3.2237 0.0153 3.1989 3.2491
FRACTION HISP 2.5240 2.5237 0.0211 2.4900 2.5593
WHITE-WHITE * FRACTION WHITES 1.3962 1.3959 0.0271 1.3526 1.4409
BLACK-BLACK * FRACTION BLACKS 0.4664 0.4665 0.0127 0.4457 0.4875
HISP-HISP * FRACTION HISP -1.5643 -1.5643 0.0305 -1.6135 -1.5135
SCHOOL 1 -3.4873 -3.4871 0.0739 -3.6103 -3.3653
SCHOOL 2 1.8278 1.8278 0.0115 1.8089 1.8469
SCHOOL 3 -0.5626 -0.5623 0.0317 -0.6159 -0.5110
SCHOOL 4 0.4159 0.4159 0.0219 0.3796 0.4516
SCHOOL 5 1.4366 1.4365 0.0082 1.4232 1.4503
SCHOOL 6 1.3884 1.3882 0.0311 1.3376 1.4399
SCHOOL 7 2.8597 2.8592 0.0283 2.8139 2.9071
SCHOOL 8 1.2675 1.2672 0.0446 1.1948 1.3421
SCHOOL 9 -1.9436 -1.9431 0.0306 -1.9940 -1.8944
SCHOOL 10 1.7678 1.7679 0.0352 1.7091 1.8254
SCHOOL 11 -0.9222 -0.9224 0.0144 -0.9455 -0.8981
SCHOOL 12 3.5492 3.5491 0.0297 3.5004 3.5986
SCHOOL 13 -0.3995 -0.3996 0.0445 -0.4720 -0.3257

Estimated posterior distribution for the full structural model. The estimates are obtained with a sample of 100000
parameter simulations, and 5000 network simulations for each parameter proposal.
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Table 5: Model (4) in Table 2

mean median std. dev. 5 pctile 95 pctile
A. DIRECT UTILITY (uij )

CONSTANT -5.9132 -5.9131 0.0146 -5.9373 -5.8894
MALE 0.0463 0.0464 0.0119 0.0264 0.0657
WHITE 0.0044 0.0045 0.0163 -0.0224 0.0310
BLACK 1.1310 1.1311 0.0063 1.1208 1.1414
HISP 2.2806 2.2804 0.0303 2.2308 2.3306
INCOME -1.6492 -1.6490 0.0381 -1.7122 -1.5869
SAME GENDER 0.4851 0.4851 0.0155 0.4597 0.5107
SAME GRADE 2.0113 2.0113 0.0264 1.9674 2.0545
WHITE-WHITE 0.5720 0.5719 0.0129 0.5510 0.5933
BLACK-BLACK 1.1445 1.1442 0.0147 1.1208 1.1691
HISP-HISP -0.2269 -0.2270 0.0172 -0.2553 -0.1986
BEAUTY i -2.2413 -2.2411 0.0382 -2.3044 -2.1790
BEAUTY j 1.5861 1.5857 0.0207 1.5525 1.6204
PERSONALITY i -0.1570 -0.1570 0.0100 -0.1736 -0.1404
PERSONALITY j -0.7390 -0.7388 0.0185 -0.7698 -0.7088
Income i - Income j 0.9012 0.9010 0.0208 0.8672 0.9356
Income i + Income j 0.9244 0.9242 0.0220 0.8885 0.9607
FRACTION WHITES -1.4420 -1.4420 0.0091 -1.4569 -1.4269
FRACTION BLACKS 1.8309 1.8309 0.0119 1.8114 1.8504
FRACTION HISP 0.7798 0.7798 0.0106 0.7624 0.7970
WHITE-WHITE * FRACTION WHITE 2.7840 2.7831 0.0504 2.7028 2.8685
BLACK-BLACK * FRACTION BLACKS 0.4028 0.4028 0.0063 0.3923 0.4130
HISP-HISP * FRACTION HISP -1.3630 -1.3629 0.0075 -1.3754 -1.3508
SCHOOL 1 -0.0766 -0.0766 0.0279 -0.1220 -0.0307
SCHOOL 2 1.3889 1.3890 0.0273 1.3436 1.4337
SCHOOL 3 1.8308 1.8306 0.0185 1.8005 1.8610
SCHOOL 4 1.4277 1.4276 0.0173 1.3996 1.4565
SCHOOL 5 1.9201 1.9201 0.0145 1.8961 1.9440
SCHOOL 6 -0.7518 -0.7519 0.0197 -0.7841 -0.7191
SCHOOL 7 0.0355 0.0355 0.0135 0.0129 0.0576
SCHOOL 8 -0.5121 -0.5122 0.0228 -0.5494 -0.4746
SCHOOL 9 -2.6615 -2.6613 0.0559 -2.7538 -2.5701
SCHOOL 10 1.1371 1.1374 0.0345 1.0796 1.1937
SCHOOL 11 -0.8724 -0.8725 0.0274 -0.9173 -0.8271
SCHOOL 12 1.6418 1.6419 0.0207 1.6078 1.6758
SCHOOL 13 1.3257 1.3248 0.0526 1.2412 1.4140

B. MUTUAL UTILITY (mij )

CONSTANT 6.1668 6.1659 0.0408 6.1010 6.2346
SAME GENDER 1.0716 1.0716 0.0153 1.0462 1.0967
SAME GRADE -3.0514 -3.0510 0.0220 -3.0882 -3.0160
WHITE-WHITE -0.6017 -0.6016 0.0186 -0.6322 -0.5711
BLACK-BLACK 1.1177 1.1175 0.0261 1.0750 1.1613
HISP-HISP -1.4659 -1.4655 0.0229 -1.5033 -1.4287

C. INDIRECT UTILITY AND POPULARITY (vij )

CONSTANT -0.4705 -0.4705 0.0071 -0.4823 -0.4587
SAME GENDER -0.4074 -0.4072 0.0069 -0.4188 -0.3962
SAME GRADE 0.1136 0.1136 0.0095 0.0981 0.1293
WHITE-WHITE 0.1856 0.1857 0.0090 0.1708 0.2004
BLACK-BLACK 0.1372 0.1371 0.0081 0.1239 0.1507
HISP-HISP -0.5067 -0.5066 0.0111 -0.5249 -0.4886

Estimated posterior distribution for the full structural model. The estimates are obtained with a sample of 100000
parameter simulations, and 5000 network simulations for each parameter proposal.
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Table 6: Model (3) in Table 2

mean median std. dev. 5 pctile 95 pctile
CONSTANT -6.6500 -6.6499 0.0189 -6.6812 -6.6191
MALE -0.1517 -0.1516 0.0105 -0.1690 -0.1349
WHITE -0.1710 -0.1709 0.0139 -0.1938 -0.1484
BLACK 1.0451 1.0451 0.0048 1.0371 1.0530
HISP 2.0990 2.0991 0.0235 2.0604 2.1375
INCOME -2.0543 -2.0542 0.0319 -2.1075 -2.0025
SAME GENDER 0.2067 0.2068 0.0131 0.1848 0.2281
SAME GRADE 2.3817 2.3814 0.0211 2.3469 2.4166
WHITE-WHITE 1.0138 1.0136 0.0133 0.9921 1.0358
BLACK-BLACK 1.6491 1.6489 0.0159 1.6233 1.6754
HISP-HISP 0.3186 0.3184 0.0166 0.2914 0.3463
ATTRACTIVE i (Physical) -2.3568 -2.3567 0.0296 -2.4057 -2.3084
ATTRACTIVE j (Physical) 2.5166 2.5163 0.0255 2.4750 2.5590
ATTRACTIVE i (Personality) -0.4964 -0.4964 0.0087 -0.5108 -0.4821
ATTRACTIVE j (Personality) -1.0932 -1.0930 0.0165 -1.1205 -1.0664
Income i - Income j (logs) 0.8883 0.8883 0.0141 0.8654 0.9116
Income i + Income j (logs) 1.0947 1.0947 0.0177 1.0660 1.1242
FRACTION WHITES -1.7088 -1.7087 0.0074 -1.7210 -1.6966
FRACTION BLACKS 1.3416 1.3419 0.0128 1.3205 1.3625
FRACTION HISP 0.8397 0.8397 0.0084 0.8260 0.8535
WHITE-WHITE * FRACTION WHITES 4.3915 4.3908 0.0526 4.3059 4.4785
BLACK-BLACK * FRACTION BLACKS 0.2528 0.2529 0.0061 0.2428 0.2627
HISP-HISP * FRACTION HISP -1.6908 -1.6907 0.0088 -1.7053 -1.6766
SCHOOL 1 -0.2439 -0.2439 0.0222 -0.2807 -0.2075
SCHOOL 2 1.7809 1.7807 0.0217 1.7450 1.8169
SCHOOL 3 1.7858 1.7858 0.0146 1.7616 1.8097
SCHOOL 4 1.9064 1.9061 0.0176 1.8780 1.9355
SCHOOL 5 2.2429 2.2428 0.0127 2.2221 2.2642
SCHOOL 6 -1.4227 -1.4226 0.0179 -1.4523 -1.3933
SCHOOL 7 -0.2224 -0.2223 0.0124 -0.2428 -0.2024
SCHOOL 8 0.2460 0.2457 0.0232 0.2084 0.2842
SCHOOL 9 -2.7969 -2.7967 0.0425 -2.8673 -2.7275
SCHOOL 10 0.8911 0.8914 0.0262 0.8480 0.9341
SCHOOL 11 -1.0609 -1.0608 0.0206 -1.0949 -1.0270
SCHOOL 12 0.9857 0.9859 0.0206 0.9516 1.0191
SCHOOL 13 2.9091 2.9085 0.0523 2.8237 2.9954

Estimated posterior distribution for the full structural model. The estimates are obtained with a sample of 100000
parameter simulations, and 5000 network simulations for each parameter proposal.
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Table 7: Model (6) in Table 2

mean median std. dev. 5 pctile 95 pctile
A. DIRECT UTILITY (uij )

CONSTANT -5.8070 -5.8070 0.0068 -5.8185 -5.7958
MALE 0.2350 0.2348 0.0081 0.2212 0.2483
WHITE 0.3023 0.3023 0.0120 0.2826 0.3219
BLACK 1.1801 1.1801 0.0028 1.1755 1.1847
HISP 2.0295 2.0297 0.0197 1.9967 2.0616
INCOME -1.4645 -1.4645 0.0259 -1.5072 -1.4216
SAME GENDER 0.7644 0.7644 0.0093 0.7491 0.7797
SAME GRADE 2.1800 2.1798 0.0162 2.1533 2.2067
WHITE-WHITE 0.2739 0.2739 0.0063 0.2637 0.2839
BLACK-BLACK 0.9405 0.9405 0.0098 0.9246 0.9570
HISP-HISP -0.1394 -0.1395 0.0098 -0.1554 -0.1226
BEAUTY i -1.9430 -1.9432 0.0258 -1.9855 -1.9001
BEAUTY j 1.2609 1.2609 0.0121 1.2412 1.2812
PERSONALITY i -0.1631 -0.1633 0.0057 -0.1725 -0.1533
PERSONALITY j -0.3939 -0.3939 0.0135 -0.4164 -0.3716
Income i - Income j 0.7403 0.7401 0.0134 0.7178 0.7621
Income i + Income j 0.6892 0.6894 0.0149 0.6643 0.7136
FRACTION WHITES -1.6126 -1.6124 0.0060 -1.6228 -1.6029
FRACTION BLACKS 1.9618 1.9618 0.0063 1.9514 1.9722
FRACTION HISP 0.7731 0.7731 0.0066 0.7623 0.7839
WHITE-WHITE * FRACTION WHITE 2.3272 2.3271 0.0340 2.2719 2.3837
BLACK-BLACK * FRACTION BLACKS 0.2516 0.2515 0.0066 0.2410 0.2624
HISP-HISP * FRACTION HISP -1.1400 -1.1399 0.0059 -1.1494 -1.1302
SCHOOL 1 -0.1335 -0.1336 0.0163 -0.1603 -0.1067
SCHOOL 2 1.4996 1.4994 0.0169 1.4722 1.5276
SCHOOL 3 1.8785 1.8785 0.0102 1.8620 1.8954
SCHOOL 4 1.3724 1.3724 0.0106 1.3553 1.3898
SCHOOL 5 1.6828 1.6827 0.0088 1.6686 1.6973
SCHOOL 6 -1.0683 -1.0679 0.0128 -1.0902 -1.0481
SCHOOL 7 -0.9817 -0.9815 0.0280 -1.0285 -0.9346
SCHOOL 8 -0.5932 -0.5929 0.0203 -0.6274 -0.5602
SCHOOL 9 0.2444 0.2442 0.0109 0.2267 0.2624
SCHOOL 10 -1.1949 -1.1948 0.0168 -1.2230 -1.1679
SCHOOL 11 -2.3824 -2.3821 0.0379 -2.4446 -2.3196
SCHOOL 12 1.2316 1.2318 0.0248 1.1911 1.2720
SCHOOL 13 -1.4722 -1.4719 0.0203 -1.5061 -1.4389
SCHOOL 14 1.8479 1.8480 0.0084 1.8339 1.8617
SCHOOL 15 0.5666 0.5663 0.0301 0.5176 0.6166

B. MUTUAL UTILITY (mij )

CONSTANTm 5.3139 5.3137 0.0257 5.2721 5.3572
SAME GENDERm 1.1539 1.1536 0.0088 1.1397 1.1688
SAME GRADEm -3.0575 -3.0575 0.0158 -3.0831 -3.0317
WHITE-WHITEm -0.4960 -0.4959 0.0120 -0.5162 -0.4766
BLACK-BLACKm 0.7067 0.7068 0.0178 0.6771 0.7362
HISP-HISPm -1.4639 -1.4639 0.0120 -1.4839 -1.4442

C. INDIRECT UTILITY AND POPULARITY (vij )

CONSTANTv -0.4308 -0.4309 0.0048 -0.4386 -0.4230
SAME GENDERv -0.3987 -0.3987 0.0045 -0.4061 -0.3914
SAME GRADEv 0.3266 0.3266 0.0072 0.3148 0.3384
WHITE-WHITEv 0.2978 0.2978 0.0042 0.2909 0.3047
BLACK-BLACKv 0.1202 0.1203 0.0088 0.1057 0.1343
HISP-HISPv -0.2859 -0.2860 0.0059 -0.2958 -0.2759

Estimated posterior distribution for the full structural model. The estimates are obtained with a sample of 20000
parameter simulations, and 10000 network simulations for each parameter proposal.
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Table 8: Model (5) in Table 2

mean median std. dev. 5 pctile 95 pctile
A. DIRECT UTILITY (uij )

CONSTANT -7.2182 -7.2151 0.0329 -7.2761 -7.1685
MALE -0.2718 -0.2717 0.0301 -0.3208 -0.2232
WHITE 0.0440 0.0445 0.0455 -0.0286 0.1136
BLACK 0.7074 0.7049 0.0138 0.6880 0.7323
HISP 1.4590 1.4588 0.0213 1.4250 1.4946
INCOME -1.8738 -1.8740 0.0279 -1.9215 -1.8279
SAME GENDER 0.3154 0.3153 0.0156 0.2898 0.3406
SAME GRADE 2.5185 2.5173 0.0297 2.4713 2.5689
WHITE-WHITE 0.9959 0.9832 0.0534 0.9271 1.0975
BLACK-BLACK 1.5347 1.5251 0.0437 1.4755 1.6159
HISP-HISP 0.7130 0.7030 0.0530 0.6427 0.8099
BEAUTY i -1.9291 -1.9295 0.0266 -1.9732 -1.8841
BEAUTY j 2.7615 2.7616 0.0242 2.7218 2.8005
PERSONALITY i -0.8646 -0.8571 0.0401 -0.9359 -0.8087
PERSONALITY j -0.6361 -0.6332 0.0238 -0.6817 -0.6017
Income i - Income j 0.9938 0.9943 0.0141 0.9695 1.0169
Income i + Income j 0.8977 0.8979 0.0164 0.8704 0.9243
FRACTION WHITES -1.5748 -1.5614 0.0661 -1.6958 -1.4910
FRACTION BLACKS 0.7645 0.7742 0.0534 0.6684 0.8375
FRACTION HISP 1.0078 1.0023 0.0319 0.9660 1.0638
WHITE-WHITE * FRACTION WHITE 4.7269 4.7281 0.0509 4.6417 4.8081
BLACK-BLACK * FRACTION BLACKS 0.1172 0.1171 0.0125 0.0974 0.1382
HISP-HISP * FRACTION HISP -1.3872 -1.3915 0.0297 -1.4288 -1.3364
SCHOOL 1 -0.4403 -0.4408 0.0232 -0.4783 -0.4007
SCHOOL 2 2.4641 2.4648 0.0204 2.4303 2.4969
SCHOOL 3 1.3139 1.3041 0.0418 1.2578 1.3919
SCHOOL 4 2.4282 2.4233 0.0356 2.3778 2.4915
SCHOOL 5 2.8177 2.8181 0.0191 2.7867 2.8487
SCHOOL 6 -1.7375 -1.7362 0.0249 -1.7802 -1.6982
SCHOOL 7 -0.7972 -0.7982 0.0387 -0.8597 -0.7306
SCHOOL 8 -1.6076 -1.6071 0.0584 -1.7031 -1.5125
SCHOOL 9 0.4031 0.4053 0.0193 0.3675 0.4317
SCHOOL 10 -0.9558 -0.9558 0.0405 -1.0210 -0.8891
SCHOOL 11 -2.5207 -2.5209 0.0388 -2.5865 -2.4563
SCHOOL 12 0.7806 0.7750 0.0429 0.7171 0.8594
SCHOOL 13 -1.4684 -1.4657 0.0440 -1.5433 -1.3997
SCHOOL 14 0.0815 0.0818 0.0257 0.0388 0.1237
SCHOOL 15 3.6894 3.6896 0.0506 3.6055 3.7699

Estimated posterior distribution for the full structural model. The estimates are obtained with a sample of 20000
parameter simulations, and 10000 network simulations for each parameter proposal.
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